Spherical Microphone Array Processing in Python

with the sound_field_analysis-py Toolbox

Christoph Hohnerlein', Jens Ahrens®
! Quality & Usability Lab, Technische Universitdt Berlin, Deutschland, Email: christoph.hohnerlein@qu.tu-berlin.de

Division of Applied Acoustics, Chalmers University of Technology, Sweden, Email: jens.ahrens@chalmers.se

Abstract

The sound_field_analysis-py toolbox started as a Python
port of SOFiA toolboxﬂ by Benjamin Bernschiitz et al.
[1], which performs the analysis and processing of data
captured with spherical microphone arrays. SOFiA is
written for Matlab with several externals in C/C++ and
published under the GNU GPLv3 license.

The current implementation deals with impulse responses
and headphone playback — frame-based processing, which
would allow real-time manipulation, is subject to ongoing
work. Furthermore, we are working towards interfacing
sound_field_analysis-py with other existing Python au-
dio processing tools, such as the sound._field_synthesis-py
toolbox [2], to leverage community efforts towards base-
line implementations and reproducible research.

The sound_field_analysis-py toolbox is available on
GitHutf]

Introduction

Spherical microphones (such as the Eigenmikeﬂ) as well
as scanning/sequential arrays (such as the VariSphea
can be used to record multi-point room impulse re-
sponses. Such a set can then be used to retroactively
apply that room’s reverberation to a signal, similarly to
traditional Room Impulse Responses (RIRs). But in con-
trast to RIRs, array recordings theoretically allow for a
fully dynamic reproduction of the rooms response, only
limited by the spatial resolution of the array.

Figure [I| shows two possible workflows: A multi-point
room IR can either be combined with a set of HRTFs
to recreate a virtual scene binaurally or used to gener-
ate the corresponding driving functions of a loudspeaker
based sound field synthesis approach, as for example pre-
sented in [3]. Apart from capturing impulse responses,
spherical microphone arrays also allow for storing and
transmitting of full dynamic sound scenes including all
spatial information.

A spherical harmonics expansion of the captured sound
field has shown to be a convenient representation as
this finite discrete set of signals can represent a con-
tinuous spherical space. Furthermore, rotations can be
performed elegantly, which is very important for head-
tracked binaural playback.

1http://audiogroup.web.th—koeln.de/SUFiA_wiki/WELCUME.
html

2 https://github.com/QULab/sound_field_analysis-py/
3https://www.mhacoustics.com/products
4http://audiogroup.web.th—koeln.de/varisphear.html

Therefore, most of the work in this package concerns
transformations and processing in the spherical harmon-
ics space. Unfortunately, the larger theoretical back-
ground is out of scope for the paper at hand. As a port
of the SOFiA Toolbox [I], our package implements func-
tions covered in the corresponding thesis [4], and builds
on extended literature such as [5] and [6].

Example workflow

Converting the time domain data into spatial coeffi-
cients comprises two steps: First, a standard Fourier
Transform process.FFT() is applied, followed by either
the explicit (if the quadrature is appropriate) or least-
squares spatial Fourier transform (process.spatFT() or
process.spatFT_LSF()). Furthermore, it is useful to
pre-calculate the radial filters that effectively undo the
effects of the microphone array due to its size, trans-
ducer type and scattering body (if there is one) using
gen.radial filter_fullspec().

Now, the coefficients can be manipulated (for example
resampled, rotated, weighted) and visualized. Further-
more, when the spherical harmonics expansion of a set of
HRTFs is available, the two can be combined by means of
convolution in the spherical harmonics domain (as shown
in [7] and [8]):

ST=5 S d P, (1)

n=0m=-—n

where d,, are the radial filters, P,,, the complex conju-
gate of the sound field coefficients and H,,,, the HRTF
coefficients.

Applying the inverse of the two step transformation
(process.ispatFT() and process.iFFT()) to go back
to time domain yields a pair of impulse responses that
represent the ear signals of a human listener that is ex-
posed to the sound field that was captured by the micro-
phone array. This process can be performed for different
virtual head orientations and the data can then be ex-
ported for binaural rendering using the SoundScapeRen-
derer using io.write_ SSR_IRs().

Some examples are available in the examples folder on
GitHub.

Modules

The sound_field_analysis-py package contains several sub-
modules; the most important ones gen, process, plot
and io are briefly introduced in the following.

http://audiogroup.web.th-koeln.de/SOFiA_wiki/WELCOME.html
http://audiogroup.web.th-koeln.de/SOFiA_wiki/WELCOME.html
https://github.com/QULab/sound_field_analysis-py/
https://www.mhacoustics.com/products
http://audiogroup.web.th-koeln.de/varisphear.html

HRTE Processing |
Dataset resampling Dynamic
weighting Binaural IRs
Processing
Loudspeaker
Spherical extrapolation| | Priving function
Room IRs

Figure 1: The sound field captured by a spherical microphone array can be combined with an HRTF dataset by means of
convolution in the spherical harmonics domain to produce dynamic binaural room simulations or added to a speaker-based

sound field reproduction setup, such as Wave Field Synthesis [3].

Generators

The gen package contains all routines that generate data
based only on meta data.

Sound fields

There are two functions that directly return the coeffi-
cients of a synthesized sound field: ideal_wave() and
sampled_wave(). Both simply need a description of
the desired sound field, such as the configuration of the
simulated microphone array, type and direction of the
impinging wave.

Quadratures

Gauss and Lebedev quadratures (both explicitly inte-
grable) can be generated using gen.gauss_grid() and
gen.lebedev(). For the Lebedev grid, stable orders
up to N = 11 (corresponding to a degrees of L €
[6,14, 26, 38, 50,74, 86,110, 146,170,194]) can be satis-
fied. It is based on Richard P. Muller’s Python imple-
mcntatiorﬂ of [9].

Radial Filters

Radial filters for three different configurations (open
sphere, rigid sphere, dual sphere) using 2 different trans-
ducer types (omni and cardiod) are implemented, exclud-
ing the dual cardioid configuration.

Processing

The processing submodule contains functions that trans-
form existing data.

Fourier Transform

The process.FFT and process.iFFT function rely on
Numpy’s £ft.rfft routine to perform time < frequency
transformations. All frequency-domain signals are ex-
pected to be one-sided and all time-domain signals to be
real.

5https ://github.com/gabrielelanaro/pyquante/blob/
master/Data/lebedev_write.py

Convolution

Convolution is either performed in the frequency domain
(fast convolution) using scipy.signal.fftconvolve()
or in the time domain using numpy.convolve(). Unless
explicitly set, the mode is automatically set to the faster
one (switching from time domain to fast convolution if
VN > 500).

Spatial Fourier Transform

Generally, the spherical harmonics coefficients P, (w)
of order n, degree m and frequency w that correspond
to a frequency-domain function F(w, §2) at positions € is
derived through the expansion integral over a continuous
unit sphere S:

Pr(w) = /S Flw, Q)Y (Q)d0, (2)

with Y,;"(€2) as the complex conjugate spherical harmonic
basis functions. Because the unit sphere is not continu-
ously measured with a real microphone array but instead
sampled at discrete points §2;, the spherical harmonics
coefficients can be determined by two different methods.

Firstly, Eq. [2] can be approximated in discrete space
over an integrable spherical quadrature, as implemented
in process.spatFT():

P () =((4mw V7 (2)), Fw, Q) (3)
where (,) denotes the inner product; Y,;"(€2;) the com-
plex conjugate of the spherical harmonic basis functions
at the discrete positions §2;; w; the quadrature weights as-
sociated with each position and F'(w, §2;) the correspond-
ing frequency-domain signals.

As an alternative, a least-square fit of spherical har-
monic coefficients on the data is implemented in
process.spatFT_LSF(), which solves:

argmin||[(Y," (), P (©)) = Fw,)l (4)
P ()

https://github.com/gabrielelanaro/pyquante/blob/master/Data/lebedev_write.py
https://github.com/gabrielelanaro/pyquante/blob/master/Data/lebedev_write.py

for P,,,(w) in the least-square sense, where || - ||, is the
L, norm.

The inverse spatial Fourier Transform
process.ispatFT() is implemented as:

Plane Wave Decomposition

Plane wave decomposition of directions €2, is computed
as:
D(w, ;) = (Y (), dy (k1) Py (w)) (6)

where Y,,"(€;) are the spherical basis functions of direc-
tions €, d,,(kr) are the radial filters at wavenumber k &
radius r and P,,,(w) are the spherical field coefficients.

Rotation

Currently, only rotation around the vertical axis has been
implemented, which is the most important rotation when
head-tracking is considered. It is expressed as a complex
phase at reconstruction:

Fw) =YY" Puulw) 2% d,(kr)Y;(Q;) (7)

n=0m=—n A« rotation

The implementation of arbitrary rotations is subject to
on-going work.

Spherical math utilities

The sph subpackage contains mathematical expressions
that are needed when dealing with spherical arrays.
Specifically, this includes various Bessel functions, their
spherical expression and their respective derivatives:

— Bessel J,,(2), j,(z), jn(z) (normal, spherical, spher-
ical derivative)
besselj | spbessel | dspbessel(n, z)

— Neumann Y,,(z), ... (Weber / Bessel 2nd kind)
neumann(n, z) |

~ Hankel H{V/®) (x), ... (1st / 2nd kind)
hankell(n, z) |
hankel2(n, z) |

Furthermore, spherical harmonic basis functions
Y, (¢,0) up to order N,,,. = 85 of several types (see
Eq. 7 can be generated on an arbitrary grids using
the sph.sph_harm() function.

Plotting

Each processing stage can be evaluated via various ways
of plotting data, which is internally offloaded to the
Plotly.py package. This produces highly portable, in-
teractive plots that render in the browser using the D3.js
library.

2D

plot.plot2D() draws an arbitrary number of signals
along a common x-axis. Several predefined types {time,
linFFT, logFFT} are available. Exports, such as Fig.
are also available.

— ideal: az=0
ideal: az=80
— sampled: az=0

08 —— sampled: az=90

0.5

0.4

Amplitude

0.2

] 0.002 0.004 0.006 0.008 0.01

Time [s]

Figure 2: 2D time-domain plot of an ideal and sampled plane
wave at two different directions.

3D

plot.plot3D() generates a 3D visualization of a sound
field by displaying the normalized magnitude of it’s plane
wave decomposition at a 1° resolution. These are ren-
dered using webGL, which is available in all modern
browsers and therefore highly portable and fast. Figure
shows such a 3D plot.

Figure 3: 3D plot of the magnitude of the plane wave de-
composition of an ideal (left) and sampled (right) plane wave
at f =7 kHz.

Input/Output

The io submodule handles importing/exporting data as
well as defines the four data containers used internally:

— io.TimeSignal(signal, fs, delay)

— io.SphericalGrid(azimuth, colatitude,
radius, weight)

— io.ArrayConfiguration(radius, type,
transducer)

— io.ArraySignal(io.TimeSignal,
io.SphericalGrid, io.ArrayConfiguration)

miro

The miro datatypeﬁ for Matlab can be read using the
io.read miro_struct() function. However, this only
works if the .mat file was exported as a struct or in
the older 7.2 format, as this function relies internally on
scipy.io.loadmat.

SOFA

Spatially Oriented Format for Acoustics (SOFA, [10]) is
a file format that stores a variety of spatial acoustic data

6http ://audiogroup.web.th-koeln.de/FILES/miro_
documentation.pdf

http://audiogroup.web.th-koeln.de/FILES/miro_documentation.pdf
http://audiogroup.web.th-koeln.de/FILES/miro_documentation.pdf

such as HRTFs, BRIRs or array recordings and is stan-
dardized as AES69-20157 It is based on the efficient
HDF5 format and currently only provides a C++ and
Matlab API. It can however be read into Python using
the netCDF4 package. A small tutorial was made avail-
able as an example on GitHulfl

SoundScapeRenderer

The function io.write_SSR_IRs() exports impulse re-
sponses into a .wav file compatible with the binaural
renderer of the SSR which allows for dynamic evaluation
with head-tracking [I1].

Conventions

Signal data structure

Python/Numpy’s arrays can be dimensionless, contrary
to e.g. Matlab. Internally, such an array is assumed to
be a single signal. If more than one signal are combined
into a [M x N] matrix, it is treated as M signals of
length N (row-major).

Spherical Harmonics

In order to be compatible with the SH definitions most
commonly found in the literature, three different spheri-
cal harmonic basis functions are implemented: Complex
(Eq. , real (Eq. @ and so called ”legacy” (Eq.
without Condon—Shortley phase). The complex defini-
tion is used internally.

N(m,n,0) = 2n4: 1MP,T(COS 6)
Vi (0,0) = (=1)"N(jml,n,0) - €™? (8)
V2cos(myp), m >0
Y (p,0) = (=1)"N(|Im[,n,0) - { 1, m =0
V2sin(me), m <0
9)
Y™ (p,0) = N(m,n,0) - ™ (10)

Future Development

Currently, all implementations are carried out in terms of
impulse responses. This means that sound_field_analysis-
py reads room impulse responses captured by a spher-
ical microphone array and produces ear impulse re-
sponses. Ways of applying the same processing to signal
streams in a frame-based fashion are investigated, which
would allow for real-time processing. This would likely
be accomplished by interfacing with sounddevicﬂ and
jackclient | packages. This would allow for fast evalu-
ation of sound fields directly from Python.

7http://www.aes.org/publications/standards/search.cfm?
docID=99

&https://github.com/QULab/sound_field_analysis—
py/blob/master/examples/Exp3_Import_SOFA.ipynb

Bhttps://python—sounddevice.readthedocs.io/
10https://jackclient—python.readthedocs.io/

Acknowledgments

We would like to thank Benjamin Bernschiitz for his
continued support, as well as Matthias Geier for the
many fruitful discussions.

References

[1] Benjamin Bernschiitz, Christoph Po6rschmann,
Sascha Spors, and Stefan Weinzierl. SOFiA sound
field analysis toolbox. In Proceedings of the Inter-
national Conference on Spatial Audio (ICSA), pages
7-15, 2011.

[2] Hagen Wierstorf and Sascha Spors. Sound field
synthesis toolbox. In Audio Engineering Society
Convention 132. Audio Engineering Society, 2012.
http://sfstoolbox.org.

[3] Jens Ahrens and Sascha Spors. Wave field synthesis
of a sound field described by spherical harmonics
expansion coefficients. The Journal of the Acoustical
Society of America, 131(3):2190-2199, 2012.

[4] Benjamin Bernschiitz. Microphone arrays and sound
field decomposition for dynamic binaural recording.
PhD thesis, Technische Universitat Berlin, 2016.
https://doi.org/10.14279/depositonce-5082.

[5] Jens Ahrens. Analytic Methods of Sound Field Syn-
thesis. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2012. http://www.soundfieldsynthesis.
org.

[6] Boaz Rafaely. Fundamentals of spherical array pro-
cessing, volume 8. Springer, 2015.

[7] Amir Avni, Jens Ahrens, Matthias Geier, Sascha
Spors, Hagen Wierstorf, and Boaz Rafaely. Spa-
tial perception of sound fields recorded by spherical
microphone arrays with varying spatial resolution.
The Journal of the Acoustical Society of America,
133(5):2711-2721, 2013.

[8] Carl Andersson. Headphone auralization of acoustic
spaces recorded with spherical microphone arrays.
Master’s thesis, Chalmers University of Technology,
2017.

[9] V.I. Lebedev and D.N. Laikov. A quadrature for-
mula for the sphere of the 131st algebraic order of ac-
curacy. In Doklady. Mathematics, volume 59, pages
477-481. MAIK Nauka/Interperiodica, 1999.

[10] Piotr Majdak et al. Spatially oriented format for
acoustics: A data exchange format representing
head-related transfer functions. In Audio Engineer-
ing Society Convention 134. Audio Engineering So-
ciety, 2013. https://www.sofaconventions.org/|

[11] Jens Ahrens, Matthias Geier, and Sascha Spors.
The soundscape renderer: A unified spatial au-
dio reproduction framework for arbitrary rendering
methods. In Audio Engineering Society Conven-
tion 124. Audio Engineering Society, 2008. http:
//spatialaudio.net/ssr/.

The work presented in this paper is supported by
grant AH 269/2-1 of Deutsche Forschungsgemeinschatft.

http://www.aes.org/publications/standards/search.cfm?docID=99
http://www.aes.org/publications/standards/search.cfm?docID=99
https://github.com/QULab/sound_field_analysis-py/blob/master/examples/Exp3_Import_SOFA.ipynb
https://github.com/QULab/sound_field_analysis-py/blob/master/examples/Exp3_Import_SOFA.ipynb
https://python-sounddevice.readthedocs.io/
https://jackclient-python.readthedocs.io/
http://sfstoolbox.org
https://doi.org/10.14279/depositonce-5082
http://www.soundfieldsynthesis.org
http://www.soundfieldsynthesis.org
https://www.sofaconventions.org/
http://spatialaudio.net/ssr/
http://spatialaudio.net/ssr/
The work presented in this paper is supported by
grant AH 269/2-1 of Deutsche Forschungsgemeinschaft.

