
Real-Time Implementation of Binaural Rendering of
High-Order Spherical Microphone Array Signals

Hannes Helmholz, Carl Andersson, and Jens Ahrens

Audio Technology Group
Division of Applied Acoustics

Chalmers University of Technology
SE-412 96 Gothenburg

{hannes.helmholz,carl.andersson,jens.ahrens}@chalmers.se

Abstract
We present ReTiSAR1 (Real-Time Spherical Array Render-
er), an open-source implementation of real-time binaural
rendering of signals obtained from spherical microphone
arrays. The implementation was performed in Python and
bases on the previously published SOFiA toolbox as well as
on sound_field_analysis-py. We can confirm that Python
together with the other tools employed constitutes a viable
framework for this kind of heavy-computation application
even under real-time constraints. The current version of
ReTiSAR is able to render signals of up to 8th order on a
standard laptop computer.

Introduction
A number of implementations are available for binaural
rendering of data obtained from spherical microphone arrays
– or equivalently – Ambisonics signals. Amongst the availa-
ble ones are a set of plug-ins from the IEM Plug-in Suite [1],
the SPARTA & COMPASS Audio Plug-in Suite [2], the
SOFiA toolbox [3], and sound_field_analysis-py [4]
(SFApy). [1,2] consist of plug-ins for digital audio work-
stations (DAWs). [3,4] are implementations based on
measured impulse responses (IRs) of static scenarios whose
output can be rendered with head tracking using additional
software such as the SoundScape Renderer2 (SSR) [5]. A
large set of such measurement data is available from [6].

The implementations that are based on measured IRs cannot
be employed to investigate dynamic scenarios such as mov-
ing sources or the effect of microphone self-noise on the
output. We therefore present ReTiSAR as an extension of
[3,4] for the processing of streamed signals. We found in [4]
that porting the MATLAB implementation of [3] to Python
resulted in a speed-up of the execution by a factor of 10. For
this reason, as well as the availability of an established rich
open source ecosystem consolidated the choice to implement
the pipeline in Python.

1 Available at https://github.com/AppliedAcousticsChalmers/ReTiSAR
2 For detailed instructions see
https://nbviewer.jupyter.org/github/AppliedAcousticsChalmers/sound_field
_analysis-py/blob/master/examples/Exp4_BinauralRendering.ipynb

Rendering Concept
ReTiSAR does not employ virtual loudspeakers in the binau-
ral rendering of the data but decodes the signals directly onto
the head-related transfer functions (HRTFs) in the spherical
harmonics (SH) domain. The following approach was pre-
sented, for example, in [7] and in greater detail in [8,9].

Any arbitrary interior sound field can be modeled as a con-
tinuum of plane waves that propagate in all possible
directions. The plane wave coefficients, sometimes also
referred to as signature function, represent the sound field.
Assuming that an HRTF is the acoustic response to an inci-
dent plane wave, the signals arising at the ear of the listener
due to the sound field under consideration can be computed
by weighting the HRTFs with the plane wave coefficients
for the corresponding direction and integrating over all pos-
sible directions. Exploiting the orthogonality of the spherical
harmonics allows for representing the signals 𝐸".$(𝜔) for the
left and right ear, respectively, as a sum over the SH coeffi-
cients of the involved quantities as follows:

𝐸".$(𝜔) = ∑ ∑ 𝑎+	𝑑.(𝜔)	𝐻0.+(𝜔)12222322224
567(8)

	𝑆:.;+(𝜔)	e;=+>?@AB+. 		(1)

𝑑.(𝜔) are the radial filters, 𝑆:.;+(𝜔) and 𝐻0.+(𝜔) are the SH
coefficients of the sound field that evolved on the surface of
the spherical microphone array and of the HRTFs respective-
ly. 𝑎+ is a frequency-independent factor that depends on the
definition of SH coefficients, e.g. 1 or (−1)+. We refer the
reader to [10] for details. The term e;=+>?@AB accounts for
the instantaneous azimuth of the listener’s head orientation
as measured by a head-tracking system.

Signal Processing
Eq. (1) consist of a multiplication of three frequency-
dependent quantities, which may be interpreted as a se-
quence of two fast convolutions. The quantity 𝐵.+(𝜔) can be
computed offline as neither of the involved quantities change
during execution. The real-time execution therefore requires
computing 𝑆:.;+(𝜔) from the microphone array signals as
well as a set of parallel fast convolutions of 𝐵.+(𝜔) and
𝑆:.;+(𝜔) ⋅ e;=+>?@AB, whereby appropriate zero-padding to
the utilized length 𝑙 has to be applied in the block-wise exe-
cution. We chose to implement this convolution as overlap-
save similarly to SSR. We included an option to compute the
ear signals for the current as well as the previous head orien-

tation and crossfade between the two signals for avoiding
discontinuities. We found that only specific scenarios require
this. The signal flow in depicted in Fig. 1.

The radial filters are currently computed via frequency-
domain sampling of the analytical expressions. Alternative
designs were presented, for example, in [11,12].

Employed Frameworks
We chose to use JACK Audio Connection Kit3 as framework
for routing audio signals from/to the hardware and different
components of the software. This allows for directly con-
necting hardware like the Eigenmike by mh-acoustics whose
microphone signals can be accessed directly through JACK
where the Eigenmike shows up as a standard audio device.
We used jackclient-python4 to access JACK.

Independent processing steps and utility functions are real-
ized as sub-processes initialized by the Python
multiprocessing5 interface. This allows for running and ter-
minating components separately and prevents potential
performance bottlenecks being propagated to other parts of
the pipeline.

Numpy6 is being used as the core numerical computing
package. It provides a powerful array object to efficiently
operate on n-dimensional matrices during the processing.
Designing matrix structures consciously turned out to be
very influential on real-time performance. Whenever possi-
ble, arrays are organized C-contiguous to allow for most
efficient access when iterating over anterior dimensions
while keeping posterior dimensions as continuous memory
blocks.

We found that setting up the Python environment via Ana-
conda7 was the option that led to the most efficient execution
of the implementation. This is due to Anaconda deploying
pre-compiled packages for the individual system architec-
ture. Particularly the ubiquitous numerical matrix operations
benefit from introduced parallelization, for example by de-
ploying numpy with Intel MKL (Math Kernel Library)
bindings.

3 http://www.jackaudio.org/
4 https://github.com/spatialaudio/jackclient-python/
5 https://docs.python.org/3/library/multiprocessing.html
6 https://www.numpy.org/
7 https://www.anaconda.com/

Another regularly occurring processing operation is the DFT
(Discrete Fourier Transform) and its inverse. In this case, a
one-dimensional transformation from real inputs into fre-
quency domain is performed via FFT (Fast Fourier
Transform), while the redundant Hermitian-symmetric part
is neglected. Extensive analysis showed pyFFTW8 to yield
the best real-time performance when using advanced fea-
tures of the established FFTW library. ReTiSAR utilizes the
concept of wisdom to determine and recall pre-optimized and
parallelized DFTs for the individual system hardware.

We borrow some functionality from the offline Python im-
plementation [4], for example functionality to manage HRIR
and array IR data sets in the MIRO [6] format. Currently
supported head trackers include Polhemus Patriot and Razor
AHRS by utilizing pyserial9.

Finally, we implemented an OSC10 (Open Sound Control)
interface for remotely controlling runtime functionality
through arbitrary OSC clients such as Pure Data11 for which
we provide an example interface.

So far, the implementation has only been tested on MacOS.

Execution Modes
ReTiSAR can be used in three different modes:

• Live-Rendering of streamed microphone array signals
such as those from the Eigenmike.

• Rendering of recorded microphone array signals that are
streamed from a storage medium. This reading process
can be prohibitive in terms of the maximum order that can
be handled due to bandwidth limitations of the storage
medium. ReTiSAR provides multichannel file playback.
Alternatively, ecasound12 can be utilized conveniently for
recording and playback as it routes signals directly into
JACK and connects to arbitrary parts of the rendering
pipeline.

• Rendering based on measured microphone array impulse
responses. In this case, one channel is streamed from a
storage medium containing arbitrary audio content. This
signal is convolved in real-time with array IRs and fed in-
to the renderer. The convolution is partitioned so that no

8 https://github.com/pyFFTW/pyFFTW
9 https://github.com/pyserial/pyserial
10 http://opensoundcontrol.org/
11 https://puredata.info/downloads/osc
12 https://ecasound.seul.org/ecasound/

Microphone
signals

FT

FTHRIR

SHT

SHT

Radial filters

Eq. (1)

Rotation

IFT
Binaural
signals

1

Fig. 1: Signal flow with pre-computed quantities during startup marked in gray; FT: Fourier transform, SHT: Spherical
harmonics transform, IFT: inverse Fourier transform,

hard limitations exist regarding the IR lengths. This pro-
cess, termed pre-rendering, is interesting for research
purposes to emulate streamed microphone array signals
through sequentially measured IR sets such as [6].

Instrumental Validation
We measured the impulse responses of ReTiSAR for differ-
ent head azimuth orientations and computed the RMS (root-
mean-square) of the difference to the output of SFApy [4].
SFApy has been validated thoroughly and was used in a
number of psychoacoustic studies such as [8].

Both implementations operate for the exact same scenario,
i.e. R1_VSA_110RS_L from [6], where 0° head rotation
resembles facing the auralized loudspeaker.

To achieve more stable and comparable results regarding
different room conditions, i.e. IR lengths, the reference has
been normalized for every comparison and truncated after
decaying to -100 dBFS respectively. Afterwards, time and
level alignment are performed for both ears simultaneously
to account for extraneous unrelated influences of the IR
“recording” procedure.

Table 1 lists the calculated RMS differences for different
combinations of 𝑙 and 𝛼IJKL, for both ears respectively. The
results show variations in the range of -75 to -109 dBFS.
Fig. 2 visualizes the difference of the compared IRs in time
domain for the highest RMS of the analyzed combinations.
On a logarithmic scale for the entire signal (left), we see the
biggest difference around the peak of the IRs at a value of
around -43 dBFS, i.e. less than a hundredth of the signal.

RMS differences and visual inspection of the impulse re-
sponses (Fig. 2 on the right) suggest that the signals
correspond well. Informal listening confirms that the appar-
ent differences are not audible.

The apparent differences occur due to the fact that the radial
filters 𝑑.(𝜔) from Eq. (1) are computed for different lengths
in the two implementations. The length of the radial filters is
limited to the block length in ReTiSAR but not limited in
SFApy.

Current Research
Our current focus is on investigating the effect of micro-
phone self-noise on the ear signals, which is a scenario that

cannot be covered by offline implementations. We imple-
mented a module that continuously generates uncorrelated
noise that is being added to the output signals of the pre-
rendering stage, i.e. the emulated microphone signals. The
OSC interface allows for changing the noise level during
execution in order for being able to conduct comparative
listening experiments. Fig. 3 depicts a screenshot of the
JACK connections as visualized by Patchage13 for this sce-
nario.

Conclusions
We have found that Python constitutes a viable framework
for real time audio processing applications. The performance

13 https://drobilla.net/software/patchage

Fig. 3: Screenshot illustrating the JACK connections
when pre-rendering and addition of synthetic micro-
phone self-noise are applied at 4th order

Fig. 2: Example of instrumental evaluation against
SFApy for 𝑙 = 1024 and 𝛼IJKL = 40°; IR difference
magnitude (left) and IR segments of 128 samples around
peaks of SFApy (dashed lines) and ReTiSAR (solid
lines) (right)

𝒍
in samples

𝜶𝐡𝐞𝐚𝐝
in degrees

difference RMS
in dBFS

4096 0 -79.03 -79.08
 40 -79.75 -75.22
 80 -86.56 -80.39
 120 -109.43 -106.51
 160 -80.83 -76.88

1024 0 -78.94 -78.99
 40 -79.70 -75.21
 80 -86.32 -80.33
 120 -99.08 -98.96
 160 -80.38 -76.88

 Table 1: Instrumental evaluation against SFApy for
different block lengths 𝑙 and head azimuth rotations
𝛼IJKL; difference RMS for left and right ear respectively

limitation of the current version is at 8th order for IR sets
utilizing the described pre-rendering on a standard laptop.
This contains additive noise generation as well as an esti-
mated equivalent of two fast-convolutions for each of 110
channels. However, this currently requires a block length of
as long as 𝑙 = 4096 when dropouts of the audio signal are
not tolerated. Eigenmike live and recorded streams can cur-
rently be rendered at 𝑙 = 512, resulting in a lower head-
tracking and overall processing latency. Improvements of the
efficiency by further optimizations are expected.

Gaining flexibility regarding supported head-tracking inter-
faces as well as head related or array IR set, i.e. support of
the SOFA (Spatially Oriented Format for Acoustics) [13]
standard, are planned for the near future.

We have not found that operations such as garbage collec-
tion, which are being performed by the underlying Python
framework, cause audible impairment. When reaching the
system individual performance capabilities, dropouts start to
occur when switching between different applications by the
operating system, which is MacOS in the present case.

Acknowledgements
We thank David Lou Alon, Sebastià V. Amengual Garí and
Ravish Mehra of Facebook Reality Labs for advice and
financial support.

References
[1] Schörkhuber, C., Zaunschirm, M., and Höldrich, R.:

“Binaural Rendering of Ambisonic Signals via Magni-
tude Least Squares” in Proc. of DAGA, Deutsche
Gesellschaft für Akustik, Munich, Germany, p. 339–
342, 2018 (online: https://plugins.iem.at/)

[2] McCormack, L. and Politis, A.: “SPARTA &
COMPASS: Real-time implementations of linear and
parametric spatial audio reproduction and processing
methods” in Proc. of the Conf. on Immersive and Inter-
active Audio, Audio Engineering Society, York, UK,
2019 (online:
http://research.spa.aalto.fi/projects/sparta_vsts/plugins.html)

[3] Bernschütz, B., Pörschmann, C., Spors, S. and Wein-
zierl, S.: „SOFiA Sound Field Analysis Toolbox,” in
Proc. of the Int. Conf. on Spatial Audio (ICSA), Det-
mold, Germany, 2011 (online:
http://audiogroup.web.th-koeln.de/SOFiA_wiki/ABOUT.html)

[4] Hohnerlein, C. and Ahrens, J.: “Microphone Array
Processing in Python with the sound_field_analysis-py
Toolbox” in Proc. of DAGA, Deutsche Gesellschaft für
Akustik, Kiel, Germany, 2017 (online:
https://github.com/AppliedAcousticsChalmers/sound_field_analysis-py)

[5] Geier, M., Spors, S. and Ahrens, J.: “The SoundScape
Renderer: A Unified Spatial Audio Reproduction
Framework for Arbitrary Rendering Methods” in Proc.
of 124th Convention of the AES, Amsterdam, The
Netherlands, 2008 (online: http://spatialaudio.net/ssr/)

[6] Stade, P., Bernschütz, B. and Rühl, M.: ”A Spatial
Audio Impulse Response Compilation Captured at the
WDR Broadcast Studios” in Proc. of 27th Tonmeister-
tagung, Cologne, Germany, 2012 (online:
http://audiogroup.web.th-koeln.de/wdr_irc.html)

[7] Avni, A., Ahrens, J., Geier, M., Spors, S., Wierstorf, H.,
and Rafaely, B.: “Spatial perception of sound fields
recorded by spherical microphone arrays with varying
spatial resolution” in Journal of the Acoustical Society
of America 133(5), p. 2711–2721, 2013

[8] Ahrens, J. and Andersson, C.: “Perceptual Evaluation of
Headphone Auralization of Rooms Captured with
Spherical Microphone Arrays with Respect to Spa-
ciousness and Timbre,” in Journal of the Acoustical
Society of America, 2019 (accepted for publication)

[9] Zaunschirm, M., Schörkhuber, C. and Höldrich, R.:
“Binaural rendering of ambisonic signals by head-
related impulse response time alignment and a diffuse-
ness constraint” in Journal of the Acoustical Society of
America 143(6), p. 3616–3627, 2018

[10] Andersson, C.: “Headphone auralization of acoustic
spaces recorded with spherical microphone arrays”
Master’s thesis, Chalmers University of Technology,
2017

[11] Lösler, S., and Zotter, F.: “Comprehensive Radial Filter
Design for Practical higher-order Ambisonic Record-
ing” in Proc of DAGA, Nuremberg, Germany, March,
2015

[12] Zotter, F.: “A Linear-Phase Filter-Bank Approach for
Rigid-Sphere Mic-Array Recording” in Proc of IcE-
TRAN Conference, Palic, Serbia, June, 2018

[13] Majdak, P., Iwaya, Y., Carpentier, T., Nicol, R., Par-
mentier, M., Roginska, A., Suzuki, Y., et al.: “Spatially
oriented format for acoustics: A data exchange format
representing head-related transfer functions,” in Proc.
of 134th Convention of the AES, Rome, Italy, 2013

