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ABSTRACT:
We present a method for computing a spherical harmonic representation of a sound field based on observations of
the sound pressure along the equator of a rigid spherical scatterer. Our proposed solution assumes that the captured
sound field is height invariant so that it can be represented by a two-dimensional (2D) plane wave decomposition
(PWD). The 2D PWD is embedded in a three-dimensional representation of the sound field, which allows for per-
fectly undoing the effect of the spherical scattering object. If the assumption of height invariance is fulfilled, then the
proposed solution is at least as accurate as a conventional spherical microphone array of the same spherical harmonic
order, which requires a multiple of the number of sensors. Our targeted application is binaural rendering of the cap-
tured sound field. We demonstrate by analyzing the binaural output signals that violations of the assumptions that
the solution is based on—particularly height invariance and consequently also horizontal propagation—lead to errors
of moderate magnitude. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005754
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I. INTRODUCTION

Spherical microphone arrays (SMAs) have been shown
to be a convenient solution for analyzing and capturing spa-
tial sound fields whereby they exhibit properties that are
independent of the angle of sound incidence (Abhayapala
and Ward, 2002; Meyer and Elko, 2002; Rafaely, 2004;
Zotkin et al., 2010). Arrays that comprise a rigid spherical
scatterer on which the microphones are placed are most con-
venient. Spherical harmonics (SHs) have been shown to
constitute a flexible representation of the captured sound
field that facilitates applications like beamforming (Zotkin
et al., 2010) and binaural rendering (Rafaely and Avni,
2010). Binaural rendering computes the signals that would
arise at the ears of a listener when exposed to the sound field
captured by the array. This will be the targeted application
in our work. It requires the listener’s head-related transfer
functions (HRTFs) and can be performed either directly in
the SH domain (Rafaely and Avni, 2010) or by sampling of
the plane wave decomposition (PWD) of the sound field (Li
and Duraiswami, 2006) by means of beamforming.

SMAs have the downside that the direction-independent
spatial resolution that they exhibit requires a significant
number of microphones to be distributed over the surface of
the spherical scattering object. When it comes to capturing
or reproducing sound scenes for virtual reality, there may be
scenarios in which it may be sufficient to restrict the consid-
erations to the horizontal plane (Ahrens, 2012; Galindo
et al., 2020) because this is the most common real-world
scenario, and the human auditory system is optimized for it

(Blauert, 1996). Circular microphone arrays with appropri-
ate scatterers therefore exhibit considerable potential in this
context as they may achieve the same spatial resolution with
an order of magnitude fewer microphones.

Cylindrical scatterers with a circular microphone array
along the circumference and partly also with additional
microphones were investigated (Betlehem and Poletti, 2019;
Galindo et al., 2020; Kaiser et al., 2012; Parthy et al., 2011;
Teutsch and Kellermann, 2006; Trevino et al., 2014; Zotkin
et al., 2010). The evaluation was performed mostly with
respect to beamforming performance and sound source
localization capabilities. The evaluation in Betlehem and
Poletti (2019) focused on the accuracy of the extracted
sound field representation. Kaiser et al. (2012), Meyer
(2001), and Tiana-Roig et al. (2011) investigated beam-
forming based on a circular array along the equator of a
spherical scatterer.

SH decomposition based on a circular array on a planar
scatterer was presented in Zaunschirm and Zotter (2014)
and based on concentric circular arrays without a scatterer
in Chen et al. (2015). A method for reproduction of a sound
field captured by a circular microphone array on the equator
of a spherical scatterer by a concentric circular loudspeaker
array that was partially formulated in SHs was presented in
Koyama et al. (2016).

We aim at a SH representation of the captured sound
field for being able to apply tracking of the listener’s head
orientation with respect to arbitrary rotations during binaural
rendering. In our work, we assume a circular microphone
array along the equator of a spherical scattering object simi-
larly to Kaiser et al. (2012), Koyama et al. (2016), Meyer
(2001), Tiana-Roig et al. (2011), and Weller et al. (2011).
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We will refer to it as an equatorial microphone array
(EMA). Spherical scattering objects are compact and easy to
manufacture, and the mathematical treatment can be per-
formed analytically, which is not possible with other simple
geometries like finite-length cylinders.

In Algazi et al. (2004), a method for binaural rendering
of equatorial array signals without sound field decomposi-
tion is presented that maps microphone signals directly to
the ears of the listener. The scattering object thereby produ-
ces interaural cues that cannot be individualized. Head
tracking is possible only along the azimuth.

A least-squares solution to the problem at hand was pre-
sented in Weller et al. (2011). It uses a two-dimensional
(2D) formulation of the problem and was evaluated only for
plane waves. The applied amount of regularization was cru-
cial for achieving spectrally balanced loudspeaker-based
reproduction.

We presented an analytical solution to the problem in
Ahrens et al. (2021c). It also comprised a 2D representation
of the captured sound field in which the three-dimensional
(3D) scattering off the spherical scatterer was removed
whereby the sound sources that composed the captured
sound field were assumed to be distant. It was not discussed
in detail in the original publication but reflected by the
accompanying audio examples (Ahrens et al., 2021b) that a
violation of the assumption of large distance of the sound
sources (and of indirect sound sources like reflective surfa-
ces) produced an intolerable low-frequency boost that can
be on the order of several tens of dB. As an example, this
boost occurred below 100 Hz for an eighth-order EMA with
a radius of 0.0875 m for sources closer than 4 m. The boost
became more pronounced and covered a larger frequency
range if the sources were even closer. This was a fundamen-
tal limitation that prevented deploying this solution in the
targeted application scenario. The solution from Weller
et al. (2011) may be expected to suffer from similar limita-
tions as it uses a similar 2D representation.

Other conversions between 2D and 3D representations
have been presented (Ahrens and Spors, 2008, 2012;
Thomas et al., 2014), but these cannot be exploited in the
present context. The solution that we present here is based
on a formulation of the problem that uses a 3D representa-
tion of the effect of the microphone array’s scattering body
while assuming that the captured sound field is 2D. A simi-
lar formulation was presented in Koyama et al. (2016), but
the SH coefficients of the captured sound field were not
computed explicitly. The formulation does not make any
assumptions on the distances of the sound sources that pro-
duce the captured sound field.

II. APPROACH

A. Conventional spherical microphone arrays

We briefly revisit conventional SMAs in this section as
this facilitates the presentation of the EMA solution. SMAs
with pressure microphones distributed over the surface of a
rigid spherical scatterer have been shown to be most

favorable if a SH representation of the captured sound field
is sought (Rafaely, 2005). We limit our considerations to
this scenario. We use a spherical coordinate system defined
through azimuth a, colatitude b, and radial distance r from
the coordinate origin. All quantities that are observed on the
surface of the spherical scatterer are denoted with the super-
script surf in this article.

In general, the sound pressure S intðb; a; r;xÞ in an inte-
rior domain, i.e., the sound pressure inside a spherical
domain centered at the coordinate origin that is free of
sound sources and free of reflecting boundaries, is given by
(Gumerov and Duraiswami, 2005)

S intðb; a; r;xÞ ¼
X1

n¼0

Xn

m¼$n

S
^ m

n ðxÞ jn x
r

c

! "
Ym

n ðb; aÞ:

(1)

S
^

m
n ðxÞ are the SH coefficients of the incident sound field,

jnð%Þ is the nth-order spherical Bessel function, x ¼ 2pf is
the angular frequency, f is the frequency in Hz, and c is the
speed of sound in m/s. Ym

n ðb; aÞ are the surface SHs, of
which several different definitions exist. We choose to use
the complex definition [Gumerov and Duraiswami (2005),
Eq. (2.1.59)]

Ym
n ðb; aÞ ¼ ð$1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4p
ðn$ jmjÞ!
ðnþ jmjÞ!

s

Pjmjn ðcos bÞ eima;

(2)

in which Pjmjn ð%Þ are the associated Legendre functions.
The presence of a rigid spherical scatterer of radius R

that is centered at the coordinate origin affects the sound
field given by (1). It is then represented in the domain r ' R
by (Gumerov and Duraiswami, 2005)

Sðb; a; r;xÞ ¼
X1

n¼0

Xn

m¼$n

S
^ m

n ðxÞ bn x
r

c
;R

! "
Ym

n ðb; aÞ;

(3)

whereby bnð%Þ is given by [Gumerov and Duraiswami
(2005), Eq. (4.2.10)]
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c

! " hð2Þn x
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! "
: (4)

hð2Þn ð%Þ denotes the nth-order spherical Hankel function of

second kind, and the prime denotes differentiation with
respect to the argument. We choose the exponent of the tem-

poral Fourier transform such that hð2Þn ð%Þ represents outgoing

waves. Note that the coefficients S
^

m
n ðxÞ are identical in (1)

and (3).
Observing Sðb; a; r;xÞ on the surface of the scatterer

where r¼R applies allows for simplifying (4) to [Gumerov
and Duraiswami (2005), Eq. (4.2.13)]
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S
^

m
n ðxÞ are the SH coefficients of the incoming sound

field, the computation of which is the ultimate goal of this

endeavor. S
^

m
n ðxÞ can be obtained from integrating the sound

pressure S surfðb; a;R;xÞ observed on the surface of the scat-
terer weighted with the complex conjugate * of the SH basis
functions as (Williams, 1999)

S
^ m

n ðxÞ ¼
1

bn x R
c ;R

$ %
þ

O
S surfðb; a;R;xÞ Ym

n ðb; aÞ
( dX:

(6)

O denotes the spherical surface, and dX is an infinitesimal
spherical surface element. S

^
m
n ðxÞ represents the captured

sound field with the effect of the scatterer removed.
Conventional SMAs comprise microphones distributed

over the entire surface of the scattering object so that the
integral in (6) can be approximated discretely by means of
quadrature. A consequence of the quadrature is that the SH
coefficients can be retrieved only up to a given maximum
SH order N such that n; jmj ) N.

The spatial domain in which the normalized squared
error of an order-limited sound field representation is 4%
(–14 dB) or smaller is inside the spherical region around the
coordinate origin with radius r such that the argument
x r=cð Þ of the spherical Bessel function jnð%Þ is smaller than

the highest order N contained in the SH expansion
[Gumerov and Duraiswami (2005), p. 427]. Consequently,
the minimum order limit N1 at which the normalized
squared error is smaller than that is given by (Ward and
Abhayapala, 2001)

N1 ¼
'

x
c

rmax

(
; (7)

whereby d%e denotes the ceiling function. Evaluating (7) for
a human head of radius rhead ¼ 0:0875 m up to a frequency
of f ¼ 20 kHz yields a minimum SH order of N1 ¼ 33.

An order limit N2 that produces negligible truncation
error is given by (Zotkin et al., 2010)

N2 '
e x

c rmax $ 1

2
þ 1; (8)

which yields N2 ' 44 for the human head.

B. Binaural rendering

Once the SH coefficients S
^

m
n ðxÞ of the captured sound

field are known, the sound field can be rendered binaurally.
This means that the head of a listener whose HRTFs are
known can be virtually placed into the sound field at the
position of the SMA. The signal DðxÞ that occurs at a given
ear is computed as (Rafaely and Avni, 2010)

DðxÞ ¼
XN

n¼0

Xn

m¼$n

am S
^$m

n ðxÞ H
^ m

n ðxÞ; (9)

where H
^

m
n ðxÞ are the SH coefficients of the HRTFs of that ear.

am ¼ ð$1Þm for the present definition (2) of the SH basis func-
tions, or am ¼ 1 if the SH definition does not contain the factor
ð$1Þm [e.g., in Rafaely and Avni (2010)]. A matrix formulation
of (9) was presented in Zaunschirm et al. (2018).

S
^

m
n ðxÞ and H

^
m
n ðxÞ can be rotated relative to each other

to enable head tracking in the rendering.
Although physically accurate binaural rendering

requires an order of N ¼ 33 or higher, practical arrays
exhibit an order of typically less than 10. HRTFs are usu-
ally available at much higher orders so that the array is the
limiting factor. The perceptual implication of the errors,
which occur exclusively at high frequencies, is small to
significant depending on the maximum order N that is
used. The perceptual impairment becomes very small for
N ' 8 if all sound sources are located in the horizontal
plane (Ahrens and Andersson, 2019; Bernsch€utz, 2016;
L€ubeck et al., 2020; Zaunschirm et al., 2018). The fre-
quency above which artifacts occur can be determined
from (7).

C. The equatorial array

The SMA methodology for computing the SH coeffi-
cients of the captured sound field cannot directly be applied
with EMAs. The main reason is that the microphone place-
ment does not constitute a quadrature of the spherical sur-
face with respect to which the basis functions Ym

n ðb; aÞ are
orthogonal. Discretizing the integral in (6) therefore does
not yield the desired coefficients.

All SHs vanish on the equator, i.e., Ym
n ðp=2; aÞ ¼ 0,

whenever nþ m is odd (Gumerov and Duraiswami, 2005).
This prevents certain information on the sound field from
being retrieved. Also, the EMA cannot differentiate two
sound fields that are copies of one another mirrored on the
horizontal plane.

What we can do is perform an integration of the sound
pressure weighted with a complex exponential along the
equator, which is equivalent to a Fourier series expansion or
circular harmonic (CH) expansion given by [Rabenstein
et al. (2014), Sec. 4.32.3.4]

S* surf
m ðp=2;R;xÞ ¼ 1

2p

ð2p

0

S surfðp=2; a;R;xÞ e$ima da:

(10)

This yields the coefficients S* surf
m ðp=2;R;xÞ, which we refer

to as CH coefficients of S surfðp=2; a;R;xÞ in the remainder.

S surfðp=2; a;R;xÞ can be reconstructed from

S* surf
m ðp=2;R;xÞ using

S surfðp=2;a;R;xÞ ¼
X1

m¼$1
S* surf

m ðp=2;R;xÞ eima: (11)
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The integral in (10) can be approximated by a sum over the
discrete microphone positions. One consequence of this dis-
cretization is that only modes up to a given maximum order
jmj ) N can be obtained so that the reconstruction (11) is
order limited similarly to the SMA case (cf. Sec. II A).

To establish the relation between the CH coefficients

S* surf
m ðR;xÞ from (10) and the SH coefficients S

^
m
n ðxÞ from

(3), we change the order of summations in (3) to reveal the

CH coefficients S
*surf

m ðR;xÞ as

S surfðp=2; a;R;xÞ

¼
X1

m¼$1

X1

n¼jmj
S
^ m

n ðxÞ bn x
R

c
;R

! "
Ym

n ðp=2; 0Þ eima;

(12)

whereby the relation Ym
n ðp=2; aÞ ¼ Ym

n ðp=2; 0Þ eima is
exploited. Comparing (12) with (11) reveals that the coeffi-

cients S* surf
m ðp=2;R;xÞ, which we will be denoting

S* surf
m ðR;xÞ in the remainder for convenience and that we

obtain from the microphone signals via (10), are given by

S* surf
m ðR;xÞ ¼

X1

n¼jmj
S
^ m

n ðxÞ bn x
R

c
;R

! "
Ym

n ðp=2; 0Þ:

(13)

In the remainder of this derivation, we assume that the
captured sound field is height invariant, i.e., 2D. We will
analyze the consequences if the captured sound field does
not fulfill this assumption in Sec. III.

For a plane wave with unit amplitude propagating into
azimuth angle h parallel to the horizontal plane, S

^
m
n ðxÞ is

given by [Gumerov and Duraiswami (2005), Eq. (2.3.6)]

S
^ m

n ðxÞ ¼ 4pi$n Ym
n ðp=2; hÞ(; (14)

so that

S* surf
m ðR;xÞ ¼ e$imh

X1

n¼jmj
4pi$nbn x

R

c
;R

! "
Ym

n ðp=2;0Þ
* +2

:

(15)

Note that all terms that the sum in (15) is composed of are
mathematical functions that can be evaluated with arbitrary
precision.

We know from the 2D plane wave decomposition
that any interior 2D, i.e., any height-invariant, sound
field S intð~x;xÞ can be represented by a continuum of
propagating plane waves as [Rabenstein et al. (2014),
Sec. 4.32.3.4.4]

S intð~x;xÞ ¼ 1

2p

ð2p

0

$Sðh;xÞ e$ixcr cos ðh$aÞ dh; (16)

whereby $Sðh;xÞ are the plane wave coefficients and h is the
azimuthal propagation direction of a given plane wave.
Despite the fact that (16) represents a sound field in terms of

propagating plane waves, it is a general representation of 2D
sound fields.

Equation (16) uses an infinite number of plane waves,
each with a unique complex amplitude, to represent a sound
field. We can reformulate (15) accordingly by employing a
discrete sum over an infinite set of plane waves with com-
plex amplitude XlðxÞ and propagation direction ðp=2; hlÞ as

S* surf
m ðR;xÞ ¼

X1

l¼1

XlðxÞ e$imhl

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼ $S
*
mðxÞ

+
X1

n¼jmj
4pi$n bn x

R

c
;R

! "
Ym

n ðp=2; 0Þ
* +2

:

(17)

We derive in the Appendix that the term marked by the

curly brace is identical to the CH coefficients $S
*

mðxÞ of the

plane wave coefficients $Sðh;xÞ in (16). An important prop-

erty of (17) is that the unknown quantity $S
*
m is solely depen-

dent on the SH mode m (and not on the SH degree n).
Equation (17) can be solved straightforwardly for

$S
*
mðxÞ as

$S
*

mðxÞ ¼
S* surf

m ðR;xÞ
X1

n0¼jmj
4pi$n0 bn0 x

R

c
;R

! "
Ym

n0 ðp=2; 0Þ
* +2

:

(18)

Ym
n0ðp=2; 0Þ ¼ 0 8 n0 þ m ¼ odd, which allows for ignoring

certain terms in (18). The summation has to be bounded in
practice. We tested different limits and found that the accu-
racy of the sound field reconstruction from the array signals
that we evaluate in Sec. III B 1 does not increase for limits
higher than the decomposition order N. We therefore choose
this limit in the remainder.

The desired SH coefficients S
^

m
n ðxÞ of the impinging

sound field can be computed from $S
*

mðxÞ as [cf. (3) and
(17)]

S
^ m

n ðxÞ ¼ $S
*
mðxÞ 4pi$n Ym

n ðp=2; 0Þ; (19)

from which the ear signals can be computed via (9).
Similarly to Ahrens et al. (2021c) and Weller et al.

(2011), (18) employs a 2D representation of the captured
sound field. However, the fundamental difference from the
previous solutions is that (18) accounts correctly for the 3D
scattering as represented by the factor bnð%Þ and therefore
does not require the sound sources that produce the captured
sound field to be located at specific distances for successful
removal of the effect of the scatterer. Equation (18) inher-
ently assumes height invariance of the captured field. This is
indeed a fundamental limitation that generally prevents the
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reconstruction of the sound pressure at locations off the
equator. We analyze this aspect in Sec. III.

The denominator of (18) is always non-zero. Its inverse
may be interpreted as the EMA equivalent of the so-called
radial filters, which are applied with conventional SMAs
[ 1=bn xR=c;Rð Þ in (6)]. As depicted in Fig. 1 (left), the
radial filters of SMAs exhibit large gains particularly at low
frequencies that may require regularization, for example,
through soft clipping (Bernsch€utz, 2016) as

glimðxÞ ¼
2gmax

p
gðxÞ
jgðxÞj

arctan
p

2gmax
jgðxÞj

! "
; (20)

whereby gðxÞ denotes the radial filter and gmax the user-defined
maximum permitted magnitude. The effect of the regularization
is an attenuation of the magnitude at higher orders n. This has
been shown to have no perceptual consequences with binaural
rendering of SMA signals when the captured sound field is ren-
dered binaurally at orders of, say, N ¼ 8 or higher and sound
sources are in the horizontal plane (Ahrens and Andersson,
2019; Bernsch€utz, 2016; Zaunschirm et al., 2018). The particu-
lar choice of the radial filter gain-limit is not important as long
as the limit is chosen high enough so that the limitation does not
affect that part of the filter transfer function where the magnitude
increases toward higher frequencies. Then sufficient spatial
information is preserved in the lower frequencies, while the
global magnitude is not affected at high frequencies. The limit
should not be chosen too high in order to prevent detrimental
effects from sensor mismatch or additive noise from the hard-
ware (Bernsch€utz, 2016; Helmholz et al., 2020; Rafaely, 2005).

The EMA radial filters exhibit very similar qualitative
properties as evident from Fig. 1 (right) so that all observa-
tions regarding SMA radial filters apply. We will employ
soft-limiting in Sec. III B. Note that the definition of the
SMA radial filters that we use in this article differs by a fac-
tor of 4p in terms of the magnitude from the one used in, for

example, Ahrens and Andersson (2019), Bernsch€utz (2016),
and Rafaely (2005). This corresponds to a difference of
22 dB, i.e., a clipping magnitude of 40 dB in our formulation
is equivalent to 18 dB ibidem for SMAs.

III. RESULTS

We will use the example of a spherical scatterer with
radius R ¼ 0:0875 m for the evaluation of the proposed solu-
tion. This is similar to the radius of a human head and has
proven useful when binaural rendering of the captured
sound field is intended (Bernsch€utz, 2016). We will target
an eighth-order SH decomposition of the captured sound
field, which is also typical for binaural rendering applica-
tions. We use the minimum required number of micro-
phones for the EMA of L ¼ 2N þ 1 ¼ 17 [Ahrens (2012),
Sec. 4.4] with equiangular spacing.

On many occasions, we will compare the performance
of the EMA to that of a conventional SMA of the same order
of N ¼ 8. SMAs require at least L ¼ ðN þ 1Þ2 microphones
depending on the microphone placement (Zotter, 2009).
This leads to L ¼ 81 for the present case. We use a Lebedev
grid (Lebedev, 1977) with 110 nodes here for convenience
as it is common in the SMA literature.

Cf. Fig. 2 for an illustration of the geometry. Note the
different numbers of microphones (110 vs 17). Equation (7)
tells us that for both arrays, SMA and EMA, the sound field
representation will not be accurate above a frequency of
approximately 5.1 kHz. We will comment on how our obser-
vations may be generalized to other array configurations in
Sec. III A.

A. Sound field reconstruction

We evaluate the accuracy of the capabilities of SMA
and EMA of reconstructing the captured sound field using
the average normalized error EðxÞ given by

FIG. 1. Magnitude of the radial filters of SMA (left) and EMA (right) for orders n ¼ 0 … 10. The dotted lines represent the theoretical filters, and the solid
lines represent the filters soft-clipped at 40 dB. Darker shading indicates higher order.
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EðxÞ ¼ 1

Q

XQ

q¼1

--- Ŝð~xq;xÞ $ Sð~xq;xÞ
. /

= Sð~xq;xÞ
---; (21)

whereby Ŝð~xq;xÞ denotes the sound pressure at each of the
Q evaluated locations~xq on the scatterer as reconstructed by
a given array and method using (3) for n; jmj ) N. Sð~xq;xÞ
denotes the true sound pressure. We used 50 evaluation
points ~xq equally spaced along the equator and 1250 points
distributed over the whole spherical scattering surface based
on the Gauss–Legendre grid.

For the SMA, the SH coefficients are computed via dis-
cretizing the integral in (6). For the EMA, they are com-
puted using (19), which uses a discretization of the integral
in (10). We do not apply a limitation of the radial filter gain
in this section.

Figure 3 depicts EðxÞ for SMA and EMA for an
impinging horizontally propagating plane wave as well as
for spherical waves originating from the horizontal plane at
different distances. The impinging sound field was of order
N2 ¼ 45, which fulfills (8) so that the error due to the order
truncation is negligible. Figure 3 (bottom) depicts the results
for fifth-order SMA and EMA for comparison.

Both SMA and EMA exhibit the same fundamental lim-
itations toward high frequencies that are represented by (7).
Setting rmax ¼ R in (7) and solving it for f yields 5.1 kHz for
the eighth-order arrays and 3.2 kHz for the fifth-order arrays.
The SMA is equally accurate anywhere on the sphere for
both plane and spherical waves (cf. Fig. 3, blue lines). Only
the horizontally propagating plane wave fulfills the assump-
tion of height invariance that the EMA solution is based on
[cf. Eq. (17)]. In this case, the EMA sound field reconstruc-
tion is at least as accurate as the SMA reconstruction any-
where on the sphere.

Spherical waves violate the assumption of height invari-
ance stronger the closer the point from which they originate
is to the EMA. This reduces the accuracy of the EMA sound
field reconstruction as evident from Fig. 3 (middle; orange,
yellow, and purple lines). The accuracy is lower off the

equator than on it, where it is reduced only mildly. Figure 4
(top) depicts the sound pressure distribution on the spherical
scatterers due to a spherical wave originating from a dis-
tance of 1 m. Figure 4 (middle) depicts the sound pressure as

FIG. 2. Illustration of the microphone array geometries. Both support a maximum order of N ¼ 8. Left: 110-node Lebedev grid. Right: 2N þ 1 ¼ 17-node
equatorial grid. The black dots denote the locations of the microphones.

FIG. 3. (Color online) Top: 20 log10EðxÞ according to (21) for an impinging
horizontally propagating plane wave for an eighth-order conventional SMA
(blue) and an eighth-order EMA (orange). The solid lines depict 20 log10EðxÞ
evaluated exclusively along the equator of the spherical scatterer. The dashed
lines depict 20 log10EðxÞ evaluated at the remaining spherical surface. Middle:
Same as the top plot but for impinging spherical waves originating from distan-
ces of rs ¼ 3, 1, and 0.3 m. The SMA result is independent of the source dis-
tance. Bottom: Same as the top plot but for a fifth-order EMA with 11
microphones and a fifth-order SMA with the microphones placed on a 50-node
Lebedev grid with the same radius like in the top plot.
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reconstructed by the EMA, and Fig. 4 (bottom) depicts the
difference between the two.

Figure 3 (top) depicts the accuracy of the sound field
reconstruction by the EMA for the relatively high order of N
¼ 8. Figure 3 (bottom) depicts the same data but for fifth-
order arrays. The evolution of the average relative error is
qualitatively identical to the eighth-order array. We there-
fore conclude that qualitative properties of SMAs and
EMAs with respect to spatial aliasing and order limitation
are identical.

B. Binaural rendering

In the following, we evaluate the binaural signals when
the sound field reconstruction from SMA and EMA is ren-
dered according to (9). We use the term binaural signals to
refer to the transfer function from the sound field through
the microphone array and the binaural rendering. We depict
only the data for the left ear for convenience. We use the
HRTFs from Bernsch€utz (2013), which were obtained from
a torso-less Neumann (Berlin, Germany) KU100 dummy
head (DH) on a 2702-node Lebedev grid [the data can be
downloaded from Bernsch€utz (2020)].

We employ soft clipping of the radial filters at 40 dB
[cf. Eq. (20)], which corresponds to clipping the SMA radial
filters at 18 dB with the normalization used in Ahrens and
Andersson (2019), Bernsch€utz (2016), and Rafaely (2005).
Audio examples for all analyzed scenarios are available at
Ahrens et al. (2021a).

1. Accuracy of the binaural signals

Figure 5 compares the binaural signals from an EMA,
an SMA, and the HRTFs of the DH for a horizontally propa-
gating plane impinging from straight ahead of the DH. The
DH HRTFs that we employ were measured at a distance of

3.25 m. This distance is sufficient to assume that the HRTFs
do not change for farther source distances apart from the
overall amplitude (Wierstorf et al., 2011) so that we can
interpret them as the free-field acoustic response of the
DH’s ears to a plane wave.

The EMA and SMA signals are virtually identical
below approximately 4 kHz but depart slightly from the DH
signals. This is most likely due to the SH order-limitation of
the HRTFs that is inherent to Eq. (9). The limitation
smooths the data so that certain details can get lost.

Above 4 kHz, both the SMA and the EMA depart from
the DH ear signals, which is expected as the order-limited
SH representation of the captured sound field is not accurate
in this frequency range. The two arrays sample the sound
field differently so that the manifestation of spatial aliasing
also differs.

2. Non-horizontally propagating sound fields

Figure 6 depicts the binaural signals from the EMA and
the SMA as well as the corresponding HRTFs for a plane
wave impinging from straight ahead from different

FIG. 4. Top: Cylindrical projection of the actual magnitude sound pressure distribution on a logarithmic scale on the surface of the rigid scattering object
due to an impinging spherical wave of frequency f ¼ 1000 Hz originating from an azimuth of 0* in the horizontal plane from a distance of 1 m. Middle:
Reconstruction of the sound pressure distribution by an eighth-order EMA. Bottom: Difference between the two.

FIG. 5. (Color online) Binaural signals from an eighth-order SMA and an
eighth-order EMA as well as the HRTF of the DH for a plane wave imping-
ing from straight ahead.
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elevations. It is clear that the EMA cannot preserve
elevation-related localization cues as it necessarily produces
a representation of a height-invariant sound field, yet the
effect of the violation of the requirement for a height-
invariant sound field on the binaural signals is moderate. An
undesired amplification by a few dB occurs around 1 kHz
for all non-zero elevations of sound incidence, and an unde-
sired notch between 3 and 4 kHz occurs for sound incidence
from 90* elevation (straight above). For sound impinging
from straight above, all microphones of the EMA capture
the exact same signal so that the output contains only the
zeroth SH order (Thomas et al., 2014; Weller et al., 2011).

Most static HRTF elevation queues are apparent in the
frequency range above 4 kHz (Blauert, 1996), where neither
EMA nor SMA are accurate for the given maximum SH
order N and radius R of the array. The deviations of the ear
signals are caused by spatial aliasing and SH order trunca-
tion. Usually, the maximum order of the sound field repre-
sentation that can be obtained from the microphone array is
lower than the maximum order at which the HRTFs are
available. This means that, if the binaural rendering is per-
formed according to (9), the potentially available modes
ðn;mÞ 8 n; jmj > N of the HRTFs are not used because

S
^

m
n ðxÞ ¼ 0 8 n; jmj > N. Using virtual loudspeakers instead

of the modal rendering (9) may potentially mitigate this lim-
itation so that more elevation cues are preserved (Thresh
et al., 2019).

3. Sources at short distances

We compare the EMA output to the SMA output in the
following to evaluate the EMA’s performance for sources at
finite distances while keeping in mind that we cannot draw
detailed conclusions for frequencies above approximately
4 kHz from this. The SMA signals may be considered exact
below 4 kHz [cf. Fig. 3 (middle)]. This is true even with the
present radial filter gain limitation applied. We tested differ-
ent gain limitations that are even higher than the present one
and did not find a noticeable effect on the binaural signals.

Figure 7 compares the SMA and EMA binaural signals.
All data are normalized with respect to the source distance.
A small amplification at very low frequencies is apparent in
the SMA signals, particularly for the closest source distance
of rs ¼ 0:3 m compared to the farther distances. This is
expected and is a general phenomenon with the scattering
off rigid bodies (Wierstorf et al., 2011).

The EMA signals are almost identical to the corre-
sponding SMA signals below 4 kHz. Some small deviations
are apparent, particularly for the very close source at
rs ¼ 0:3 m, for example, in that the low-frequency amplifi-
cation is slightly higher for the EMA. This can be explained
by the circumstance that spherical waves originating from
finite distances violate the assumption of height invariance
that the EMA solution is based on [recall Fig. 3 (middle)].

This demonstrates that the presented solution over-
comes the limitations of our previous approach for the EMA
from Ahrens et al. (2021c), which produced an excessive
low-frequency boost for source distances shorter than 4 m
for the array geometry under consideration.

4. Head rotations about the roll axis

So far, we have been assuming that the listener’s ears
are in the horizontal plane or close to it. The remaining

FIG. 6. (Color online) HRTFs (top) and binaural output signals of an
eighth-order SMA (middle) and an eighth-order EMA (bottom) for plane
wave incidence from straight ahead from different elevations.

FIG. 7. (Color online) Binaural output signals for a listener oriented toward
an incoming spherical wave originating from the horizontal plane from dif-
ferent distances rs. Top: Eighth-order SMA; bottom: eighth-order EMA. All
data are amplitude normalized.
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aspect to investigate is how the binaural signals of the EMA
are affected by tracked roll rotations of the head, i.e., rota-
tions about the look direction, if sound sources are present
at finite distances. Figure 3 showed that the accuracy of the
EMA is lower off the equator so that the ear signals may be
affected more strongly if the ears are not located on the
equator.

Figure 8 depicts the SMA and EMA ear signals due to a
spherical wave impinging from straight ahead and originat-
ing from the horizontal plane from different distances for
different roll angles of the listener’s head. Ideal binaural sig-
nals are not affected by the roll rotations because of the rota-
tional symmetry of the sound field.

The same small alterations of the SMA signals with
changing source distance like in Fig. 7 are apparent. The SMA
ear signals are indeed independent of the roll angle below
approximately 4 kHz. Spatial aliasing occurs at higher

frequencies, which causes changes in the ear signals with
changing roll angle. Also, the EMA ear signals are independent
of the roll angle below approximately 4 kHz for plane waves
(i.e., sources at infinite distance). Roll rotations cause small
deviations on the order of 1–2 dB below 4 kHz for a source dis-
tance of rs ¼ 1 m. Very close sources at rs ¼ 0:3 m cause
magnitude deviations on the order of several dB below 4 kHz.
Note that the source position is at a distance of only approxi-
mately 0.2 m from the surface of the scatterer in this case.

The deviations above 4 kHz tend to be larger for the
EMA than for the SMA due to the limitations to predicting
the sound pressure on the surface of the EMA outside of the
equator (cf. Fig. 3, middle).

IV. CONCLUSIONS

We presented a method for obtaining a SH representa-
tion of a sound field that is captured by a microphone array
along the equator of a rigid spherical object. Our method
reduces the required number of microphones by almost an
order of magnitude compared to conventional spherical
microphone arrays [2N þ 1 vs ðN þ 1Þ2 for SH order N].
The lower required number of microphones comes with a
reduction of the computational complexity.

The solution requires that the captured sound field be
height invariant. The consequences of violating this assump-
tion are alterations of the magnitude spectrum if binaural
rendering of the captured sound field is targeted. The altera-
tions may be audible. Audio examples that accompany this
article are available (Ahrens et al., 2021a).

The primary theoretical limitation of the proposed
equatorial array compared to conventional spherical micro-
phone arrays with respect to binaural rendering is the fact
that the equatorial array always outputs a height-invariant
sound field that, consequently, propagates parallel to the
horizontal plane. As to our awareness, it has not been
proven that practical spherical microphone arrays are actu-
ally capable of preserving perceptually relevant elevation
information in a modal binaural rendering. It is therefore
unclear at this point if equatorial arrays actually exhibit a
disadvantage in practice. This has to be clarified in a per-
ceptual experiment.
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APPENDIX

We reformulate (16) by expanding the plane wave term
e$ix=c r cos ðh$aÞ into SHs using (14) as

S intð~x;xÞ ¼ 1

2p

ð2p

0

$Sðh;xÞ
X1

n¼0

Xn

m¼$n

4pi$n e$imh

+ Ym
n

p
2
; 0

! "
jn x

r

c

! "
Ym

n ðb; aÞ dh: (A1)

FIG. 8. (Color online) Binaural signals for eighth-order SMA (left column)
and EMA (right column) due to an impinging spherical wave originating
from the horizontal plane from straight ahead from different distances rs.
The listener’s head was rotated in the roll direction by different angles croll.
All data are amplitude normalized.
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Equation (A1) represents the sound field that impinges on
the scatterer. Similarly as in (1) and (3), we replace the
radial term jnðr;xÞ with bn xr=c;Rð Þ to account for the
effect of the scatterer as

Sð~x;xÞ ¼ 1

2p

ð2p

0

$Sðh;xÞ
X1

n¼0

Xn

m¼$n

4pi$n e$imh

+ Ym
n

p
2
; 0

! "
bn x

r

c
;R

! "
Ym

n ðb; aÞ dh: (A2)

Equation (A2) represents a 3D sound field that is produced
by a 2D impinging sound field. We change the order of inte-
gration and summation to yield

Sð~x;xÞ ¼
X1

n¼0

Xn

m¼$n

1

2p

ð2p

0

$Sðh;xÞ e$imh dh
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! "
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(A3)

whereby we used (10) to identify $S
*

mðxÞ, the CH coefficients
of the plane wave coefficients $Sðh;xÞ. Evaluating (A3)
along the equator of the scatterer and changing the order of
summations yields

Sð~x;xÞ ¼
X1

m¼$1

$S
*

mðxÞ

+
X1

n¼jmj
4pi$n bn x

r

c
;R

! "
Ym

n ðp=2; 0Þ
* +2

eima;

(A4)

which brings out the similarity to (17).
Equation (A4) was derived in Koyama et al. (2016)

[Eq. (A20)] by combining spherical and cylindrical wave
functions in one formulation and solving an integral over
the product of a cylindrical Bessel function and an associ-
ated Legendre function.
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