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ABSTRACT

Arrays producing self-bending beams were proposed in the litera-

ture recently. The self-bending property of the beam is achieved by

matching the phase profile that is applied to the array elements to a

self-bending wave field. This process is termed phase engineering.

It has been unclear how the optimal amplitude profile can be deter-

mined as the amplitude distribution of a self-bending wave field is

difficult to determine. Previous works employed educated guesses.

In this paper, we apply convex optimization to perform amplitude

engineering. In other words, we complement phase engineering by

determining the purely real amplitude weights that minimize the

norm of the amplitude weights for a given maximum beam ampli-

tude in the dark zone around which the beam bends. We show that

phase engineering by itself does not narrow down the solution space

sufficiently so that the choice of control points in the dark zone has

a significant impact on how well the desired self-bending property

forms.

Index Terms— Phase engineering, beamforming, convex opti-

mization, Airy beams

1. INTRODUCTION

Self-bending wave fields were first predicted in the field of quantum

mechanics [1] and made their way to acoustics via optics [2]. In op-

tics, a phase profile is imposed onto a beam of light via a phase

mask, e.g. a transparent material of appropriately varying thick-

ness [3]. The phase profile that is imposed is taken from an optical

wave front that forms a caustic. A caustic occurs if the family of

rays that represent the wave front exhibit an envelope and are tan-

gent to that envelope. This envelope is then referred to as caustic.

The same concept was applied to acoustic fields by [4, 5] using an

array of acoustic transducers that controlled the phase profile of the

evolving sound field.

The literature mentioned above focuses on the creation of self-

bending wave fields. The application of the concept to sensor

arrays to achieve a self-bending sensitivity was proposed in [6],

which opens a new line of conceivable practical implementations.

The mechanisms for creating self-bending waves and self-bending

sensitivities are essentially identical due to the reciprocity of the

Helmholtz equation. We will simply speak of self-bending beams

in the remainder of this paper, which refers to both cases.

Either way, the resulting beams exhibit distance dependent

properties. A closely related domain is nearfield beamforming,

where a distance-dependent beam is typically achieved by taking

the curvature differences between planar and spherical waves into

account [7, 8, 9, 10]. Both the gain and the delay (or, equivalently,

the complex weights) are determined for each of the array elements.

The extent to which physical limitations are taken into account

in nearfield beamforming is typically limited so that robustness is

achieved by regularization, which comes at the price of a reduction

in the performance that is difficult to control. In the present pa-

per, we present a numerical solution for the creation of self-bending

beams that uses a phase profile that is determined via physical con-

siderations, and employs optimization only for the purely real am-

plitude weights. This way, we are incorporating more physical

knowledge into the solutions than purely signal processing-based

solutions are.

2. SELF-BENDING WAVE FRONTS

Self-bending wave fields are essentially fields that are composed of

wave fronts that fold along a caustic. As the Airy integral developed

in the 1930s by Sir George Biddell Airy is a powerful tool for ex-

plaining caustics, such waves are termed Airy wavepackets or Airy

beams in electromagnetics and in optics.

Obviously, the wave itself is not accelerated. Rather, the am-

plitude envelope of the wave field appears to be bent. The concept

of [4, 5] is illustrated in Fig. 1(a): A caustic is pre-defined along

which the wave front folds. In the high-frequency limit, the wave

front does not traverse the caustic. It is important to note that self-

bending waves evolve only in the high-frequency limit. This high-

frequency limit is fulfilled if the considered wavelength is much

smaller than the curvature of the caustic. More generally, any signif-

icant changes to the wave amplitude have to evolve at length scales

much larger than the wavelength. Note that the caustic needs to be

convex in order that the wave perfectly avoids a given region in the

high-frequency limit.

We choose the sample caustic from [4, 6], which is given by the

cubic Bézier curve

B(t) = (1− t)3B0 +3t(1− t)2B1 +3(1− t)t2B2 + t3B3 , (1)

with

B0 = [0,−0.2311]T , B1 = [0.1, 0.0189]T

B2 = [0.25, 0.1689]T , B3 = [0.98,−0.3311]T ,

to allow for a direct comparison of the results. We limit our obser-

vations to the x-y-plane so that we define the four points that define

the Bézier curve as Bi = [xi, yi, 0]
T . The red line in Fig. 1(a) il-

lustrates (1). Note that the control variable t does not represent the

traveled distance along B(t), nor is it directly proportional to time

when a wave moves along B(t).
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(a) Schematic of the principle of
self-bending wave fronts via rays;
the red line indicates the pre-
scribed caustic given by (1); the
gray lines are sample tangents of
the caustic; the blue/green lines
are sample wave fronts; time may
evolve from blue to green as well
as from green to blue
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(b) Unwrapped phase profile
φ(·) of the arrays depicted in
Fig. 2; caustic based (blue curve);
numeric solution (green curve)

Figure 1: Schematic of a caustic and corresponding phase profiles

3. CREATION OF SELF-BENDING WAVES

As proven by, for example, Rayleigh’s first integral formula, a wave

field can be synthesized if its directional gradient is known along a

reference plane and if there is a continuous distribution secondary

monopole sources along this reference plane [11]:

P (x, ω) =

∫∫ ∞

−∞

2
∂

∂n
S(x, ω)

∣
∣
x=x0

︸ ︷︷ ︸

=D(x0,ω)

G(x0,x, ω)dΩ(x0) . (2)

P (·) denotes the harmonic scalar wave field that evolves due to the

monopole distribution along the reference plane. G(x,x0, ω) =
1
4π

e−iω/c|x−x0|

|x−x0|
is the free-field Green’s function, i.e. the spatio-

temporal transfer function of the secondary monopole sources. S(·)
is an arbitrary virtual scalar wave field that is source-free in the

target half-space that is bounded by the reference plane. dΩ(·) is

an infinitesimal surface element. x0 is a position on the reference

plane.

When the secondary monopoles are driven with two times the

gradient ∂/∂n of S(·) in direction normal to the boundary and eval-

uated at the boundary, then the synthesized wave fieldP (·) is identi-

cal to the virtual (prescribed) field S(·) inside the target half-space.

It is proven in the Appendix that the phase profile ∠D(·) of the driv-

ing signal is identical to the phase φ(x0, ω) of the harmonic field

at the positions of the secondary sources. It is therefore possible

to create a self-bending wave by imposing the back traced phase

profile of the self-bending wave onto a planar array of sufficiently

densely spaced transducers. This approach is termed phase engi-

neering [4, 5].

Eq. (6) in the Appendix also shows that the purely real gain

(or amplitude profile) |D(·)| of the secondary sources is given by

A(x0, ω)φ
′(x0, ω) , whereby A(·) is the amplitude distribution of

the self-bending field along the reference plane, The prime ′ repre-

sents spatial differentiation.

4. LINEAR ARRAYS

Planar transducer arrays are inconvenient as the required number of

elements is high. When wave field synthesis inside a given plane

is targeted, then also linear arrays may be employed. The driving

functions D(·) are identical to those for planar arrays apart from a

global frequency dependent factor. This type of scenario is termed

2.5-dimensional and is well known in sound field synthesis [12].

The curvatures of the wave fronts that evolve are identical to the

prescribed ones inside the target half-plane. The control over the

amplitude decay of the synthesized field over distance to the array

is limited. The synthesized wave field is obviously invariant with

respect to rotation about the axis through the array’s elements.

For convenience, we assume a linear array of transducers here.

Due to the reciprocity of the Helmholtz equation, we may interpret

the beam as the amplitude distribution of the synthesized sound field

(when loudspeakers are assumed) or as amplitude distribution of the

array’s sensitivity (when microphones are assumed).

5. OPTIMAL ARRAY PATTERN SYNTHESIS

A vast amount of literature exists on numerically optimal array

pattern synthesis in the domain of beamforming both for signal-

dependent scenarios as well as for the present case of signal-

independent scenarios [13]. A variety of optimality criteria exist.

A typical criterion for signal-independent farfield scenarios is max-

imizing the so-called white noise gain (WNG) [14], which repre-

sents the gain of the target signal (i.e., the desired signal) that the

beamformer achieves relative to spatially white noise. A convex

solution incorporating a constraint on the WNG of a farfield beam-

former is presented in [15]. This scheme is not convenient in the

present case as it is inconvenient to define what is the location of

the target signal as there are many useful options.

We therefore adapt the approach that is typically applied in

nearfield beamforming: We assume a discrete set of array elements

and find the set of weights D(x0, ω) that minimize the beam am-

plitude in the dark zone (signals from which are intended to be sup-

pressed) while maintaining unit amplitude at the target location [7].

This can lead to very aggressive and therefore non-robust solutions,

which are not applicable when the actual array exhibits the slightest

deviations from the assumptions. A lack of robustness is typically

an indication for a large range of gains of the array elements. Reg-

ularization can be applied, which modifies the solution in order to

squash this range at the expense of an (uncontrolled) reduction in

performance.

We employ the convex approach from [16] here in which we

specify the performance and aim at finding the set of gains with the

lowest norm ‖D(·)‖ that enables the desired performance. D(·) is

the vector containing the weights of all (discrete) array elements.

Searching for the lowest norm inherently squashes the range of

weights with relaxation of the performance requirements.

More explicitly, the present optimization problem reads

min‖D(x0, ω)‖ (3)

subject to

G(x0,xt, ω)D(x0, ω) = 1, (3a)

|G(x0,xd, ω)D(x0, ω)| ≤ 10
C
20 (3b)

whereby C denotes the desired attenuation in dB at the control

points in the dark zone relative to the target location in the bright



2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 15-18, 2017, New Paltz, NY

zone.

G(x0,xt, ω) =








e−iφ1(ω)G(x0,1,xt, ω)

e−iφ2(ω)G(x0,2,xt, ω)
..
.

e−iφN (ω)G(x0,N ,xt, ω)








T

is a vector containing the transfer paths from the N individual array

elements indexed by n to the target location in the bright zone, and

G(x0,xd, ω) =







e−iφ1(ω)G(x0,1,xd,1, ω) . . . e−iφN (ω)G(x0,N ,xd,1, ω)

e−iφ1(ω)G(x0,1,xd,2, ω) . . . e−iφN (ω)G(x0,N ,xd,2, ω)
...

...
...

e−iφ1(ω)G(x0,1,xd,M , ω) . . . e−iφN (ω)G(x0,N ,xd,M , ω)








is a matrix containing the transfer paths from the N individual array

elements to the M control points in the dark zone. Note that we

search for purely real D(·). The phase engineering is performed

by incorporating the phase profile φ(x0, ω) into the transfer paths

G(x0,xd, ω).

6. RESULTS

Refer to Fig. 2 for sample monochromatic self-bending beams

based on the caustic that is defined by (1) and depicted in Fig. 1(a).

The array of isotropic (monopole) elements extends along the y-

axis. The blue curve in Fig. 1(b) depicts the phase profile that was

imposed on the array elements. Fig. 2(a) shows the resulting beam

amplitude when all array elements exhibit equal amplitude. This

corresponds to the approaches presented in [4, 5]. The attenuation

in the quiet zone is in the order of 20 dB compared to locations

along the caustic. Fig. 2(b) shows the resulting beam when a cosine-

squared shaped weighting as illustrated by the blue curve in Fig. 3

is imposed on the array elements. The difference to Fig. 2(a) is

eminent [6]. A pronounced quiet zone evolves south of the caustic

indicated by the black line. The attenuation in the quiet zone is in

the order of 60 dB or more compared to locations along the caustic.

Note that the cosine-squared shaped amplitude profile works well in

the present scenario. But it cannot be considered a general solution.

Fig. 4 depicts the numerical solutions according to (3). All

weight sets including the ones from Fig. 2(b) have been normalized

to 1.

A remarkable observation is that although we are solving (3) for

purely real weights, it is generally not such that all weights exhibit

the same algebraic sign as our physical model of phase and magni-

tude would suggest it. (Note that a change in sign is equivalent to a

phase jump by π.) All simulations presented in this paper therefore

employed the condition that all real weight have to exhibit the same

algebraic sign additional to the conditions (3a) and (3b).

Another important observation when comparing Fig. 4(a)

and (b) is that the choice of control points has a fundamental ef-

fect on the spatial evolution of the beam. The mere prescription of a

phase profile onto the array elements does not narrow down the so-

lution space sufficiently. However, it seems unreasonable to sample

the dark zone densely with control points. The contour in Fig. 4(b)

is a shifted copy of a segment of the prescribed caustic and consti-

tutes a useful choice. It prevents the beam from entering the dark

zone. The resulting amplitude profile is given by the red curve in

Fig. 3.

0 10 20 30 40

-10

-5

0

5

10

15

20

25

30

-80

-70

-60

-50

-40

-30

-20

-10

0

x/λ

y
/
λ

(a) Equal amplitude of 1 imposed on all array elements
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(b) Cosine-squared amplitude profile imposed on the ar-
ray elements

Figure 2: Magnitude in dB of the beam of a sample linear array

of 51 isotropic (omnidirectional) elements of length L = 25λ lo-

cated on the y-axis; the element spacing is ∆y = 0.5λ; the black

marks indicate the locations of the arr ay elements; the black line

represents the caustic

Instead of solving (3) for purely real weights, we can, of course,

also skip prescribing a phase profile and solve for complex weights.

At first sight, we are thereby removing all physics from the prob-

lem. However, by using the same control points like in Fig. 4(b),

we are inherently assuming the solution to be related to the mod-

elled caustic. The result depicted in Fig. 4(c) is very comparable to

Fig. 4(b). Bear in mind that we have two times the amount of vari-

ables to solve for (the real part as well as the imaginary part of the

weights) so that we require two times as many control points. The

corresponding amplitude and phase profiles are given by the green

curves in Fig. 3 and Fig. 1(b), respectively.

Note that both the purely real as well as the complex solution

do not necessarily require an overdetermined equation system as it

has been chosen here. The requirements regarding the number and

spacing of the control points will be studied in future work.

7. CONCLUSIONS

We present amplitude engineering for self-bending beamformers by

prescribing an appropriate phase contour onto the elements of a lin-
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Figure 3: Amplitude profiles φ(·) applied in Fig. 2(b) (blue curve),

Fig. 4(b) (red curve), and Fig. 4(c) (green curve)

ear array and solving for the optimal purely real element gains that

enable the desired attenuation in the dark zone around which the

beam bends. We showed that the mere prescription of the phase

profile is not necessarily yield the desired solution. The choice of

control points is also essential.

The presented solution cannot be assumed to be a general one.

We rather provided first results for further investigation on the

choice of control points, conditions, and constraints for the solu-

tion.

The investigation of the robustness of the approach was beyond

the scope of this paper. The reader is referred to the results from [6]

obtained that were obtained with a cosine-squared window.

APPENDIX: DERIVATION OF THE SECONDARY SOURCE

PHASE PROFILE

Consider the driving function D(x0, ω) for the secondary source at

x0 to synthesize a sound pressure field S(x, ω) as given by (2). The

directional gradient ∂
∂n

is defined as [17]

∂

∂n
= cosαn sin βn

∂

∂x
+ sinαn sin βn

∂

∂y
+ cosβn

∂

∂z
, (4)

with αn being the azimuth of the orientation of n and βn being the

colatitude. For the present case of n pointing in positive x-direction,

∂/∂n simplifies to ∂/∂x.

Recall that we assume stationary conditions and time-harmonic

signals in this paper. We may express S(x, ω) as

S(x, ω) = A(x, ω)eiφ(x,ω)
(5)

with purely real amplitude A(x, ω) = |S(x, ω)| and purely real

phase φ(x, ω) = ∠S(x, ω). Differentiation of (5) with respect to

any of the Cartesian dimensions yields

(

A(x, ω)eiφ(x,ω)
)′

= A′(x, ω)eiφ(x,ω) + A(x, ω)
(

eiφ(x,ω)
)′

=
[
A′(x, ω) + A(x, ω)iφ′(x, ω)

]
eiφ(x,ω)

⋍ A(x, ω)φ′(x, ω)eiφ(x,ω)+iπ
2 , (6)

where in the last step we made use of the stipulated assump-

tion that the high-frequency limit applies, i.e.
∣
∣ ∂
∂n

A(x, ω)
∣
∣ ≪

∣
∣ω
c
nA(x, ω)

∣
∣, which is known as the eikonal approximation [18].

Recall that (2) states that D(x0, ω) ∝
(

A(x, ω)eiφ(x,ω)
)′ ∣

∣
x=x0

. We can deduce from (6) that, in

the high-frequency limit, the phase profile φ(x0, ω) of the driv-

ing function D(x0, ω) is identical to the phase profile of the
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(a) Real weights and phase profile from Fig. 1(b); 52 con-
trol points were used (51 + 1)
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(b) Real weights and phase profile from Fig. 1(b); 52 con-
trol points were used (51 + 1)

0 10 20 30 40

-10

-5

0

5

10

15

20

25

30

-80

-70

-60

-50

-40

-30

-20

-10

0

x/λ

y
/
λ

(c) Complex weights with no prescribed phase profile; 92
control points were used (91 + 1)

Figure 4: Magnitude in dB of the beams produced by the array from

Fig. 2 using optimal solutions according to (3); C = −80 dB; the

white cross marks the control point in the bright zone; the white

points mark the control points in the dark zone

desired sound field on the secondary source contour and the term

A(x, ω)φ′(x, ω) in (6) represents the (purely real) weight profile

to be applied.
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