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Abstract

Self-bending beamformers exhibit a sensitivity that beadsr space in the near eld
of the array. They were derived from caustic wave elds andehlbeen presented in the
literature recently. It is fairly straightforward to obtaan analytic solution for the phase
pro le that has to be imposed onto the array elements. Thageh is termed phase
engineering. Deriving the corresponding gain pro le isslegraightforward. Solutions
that have been proposed in the literature so far are edugatses as well as numerically
optimal solutions. The latter are the topic of the presentexk. We use a convex approach.
We show that the locations of both the (single) target cdnqtaint in the bright zone as
well as the (many) control points in the dark zone have a signt impact on the resulting
beam. Particularly, the control point locations in the daske have to be chosen carefully
so that the desired dark zone actually evolves. Choosingatiget control point close to
the caustic creates the largest beam gradient along theéacadisemarkable observation is
that prescribing a phase pro le onto the elements of theyarean also have a detrimental
effect, and solving for the complex beamformer weights detdya better result. Based on
the observations we conclude that minimizing the norm oftbamformer weights does
not seem to be the most favorable approach for the preseniepno

1 Introduction

Self-bending wave elds were rst predicted in the eld of gatum mechanic$[5] and made
their way to acoustics via optidﬂ14]. In optics, a phaselglis imposed onto a beam of light
via a phase mask, for example a transparent material of ppately varying thicknesQ[Q]. The
phase pro le that is imposed is taken from an optical wavatftbat forms a caustic. A caustic
occurs if the family of rays that represent the wave frontilexlan envelope and are tangent to
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that envelope. This envelope is then referred to as caublie. same concept was applied to
acoustic eldsin[17, 18] using an array of acoustic trarsghs that controlled the phase pro le
of the evolving sound eld.

The literature mentioned above focuses on the creationlbberding wave elds. The
application of the concept to sensor arrays to achieve ebselling sensitivity was proposed
in [2], which opens a new line of conceivable practical inmpéatations. The mechanisms
for creating self-bending waves and self-bending serisés/are essentially identical due to
the reciprocity of the Helmholtz equation. We will simplyesik of self-bending beams in the
remainder of this paper, which may refer to either case.

The resulting beams exhibit distance dependent propertfeglosely related domain is
near eld beamforming, where a distance-dependent beagpisally achieved by taking the
curvature differences between planar and spherical wavesccount [8, 11, 12, 19]. Both the
gain and the delay (or, equivalently, the complex weights)determined for each of the array
elements. The extent to which physical limitations are maikeo account in near eld beam-
forming is typically limited so that robustness is achiebgdegularization, which comes at the
price of a reduction in the performance that is dif cult tontwml.

While deriving the phase pro le that needs to be imposed andlement of an array is
straightforward, the original solution for self-bendingdmforming employed educated guesses
for the gain pro le [2]. A numerical solution for based on a@x optimization was proposed
in [3]. For the investigated simple scenario, the perforoeaof the optimal beamformer was
similar to the analytically derived one (i.e., the guesseldtion). It was pointed out that it
depends fundamentally on the choice of location of the cbpwints inside the dark zone how
well the self-bending property forms.

In the present paper, we summarize the basics of causticsetidoending beamforming and
investigate a selected set of scenarios to shed more ligthteotlependency of the self-bending
property on the location of the control points based on afsstenarios.

2 Self-Bending Wave Fronts

Self-bending wave elds are essentially elds that are casgd of wave fronts that fold along
a caustic. As the Airy integral developed in the 1930s by Qio@e Biddell Airy is a pow-
erful tool for explaining caustics, such waves are terrAgg wavepacket®r Airy beamsin
electromagnetics and in optics.

Obviously, the wave itself is not accelerated. Rather, thpl@ude envelope of the wave eld
appears to be bent. The concept of [17, 18] is illustratedgn Ha): A caustic is pre-de ned
along which the wave front folds. In the high-frequency tinthhe wave front does not traverse
the caustic. It is important to note that self-bending wasreslve only in the high-frequency
limit. This high-frequency limit is ful lled if the consideed wavelength is much smaller than
the curvature of the caustic. More generally, any signitogmanges to the wave amplitude have
to evolve at length scales much larger than the wavelengtte Mhat the caustic needs to be
convex in order that the wave perfectly avoids a given regidhe high-frequency limit.

We choose the sample caustic from [2, 17], which is given kyctibic Bézier curve

B(t)=(1 t)°Bg+ 3t(1 t)°Bi+ 3(1 t)t°By+ t°Bg; (1)
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with

Bo=[0; 0:2311"; By =[0:1;0:0189"
B, =[0:25,0:1689"; B;=[0:98 0:3317" ;

to allow for a direct comparison of the results. We limit oloservations to the-y-plane so
that we de ne the four points that de ne the Bézier curveBas [x;yi;0]". The red line in
Fig. 1(a) illustrates (1). Note that the control variabtibes not represent the traveled distance
alongB(t), nor is it directly proportional to time when a wave movesa8(t).

3 Creation of Self-Bending Waves

As proven by, for example, Rayleigh's rst integral formyukwave eld can be synthesized if
its directional gradient is known along a reference plarteifitiere is a continuous distribution
secondary monopole sources along this reference plane [16]

7z,
P(x; w) = , |Z’I—WnS()EZW) X=X?G(xo;x; w)dW(Xo) : (2)

=D(xo;w)
P( ) denotes the harmonic scalar wave eld that evolves due tothieopole distribution along

the reference plané&(x; xo; w) = %W is the free- eld Green's function, i.e. the spatio-
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Figure 1: Schematic of a caustic and corresponding phasdepat the reference line x 0
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temporal transfer function of the secondary monopole ssuf ) is an arbitrary virtual scalar
wave eld that is source-free in the target half-space teatounded by the reference plane.
dW ) is an in nitesimal surface elementg is a position on the reference plane.

When the secondary monopoles are driven with two times thaéignt=1n of § ) in direc-
tion normal to the boundary and evaluated at the boundaew, tthe synthesized wave el )
is identical to the virtual (prescribed) el8( ) inside the target half-space. It is proven in the
Appendix that the phase pro le D( ) of the driving signal is identical to the phaséxg; w)
of the harmonic eld at the positions of the secondary sosirdeis therefore possible to cre-
ate a self-bending wave by imposing the back traced phaske mfothe self-bending wave
onto a planar array of suf ciently densely spaced transtkic&his approach is termgzhase
engineerind17, 18].

Eq. (9) in the Appendix also shows that the purely real garrafoplitude pro le) jD( )j of
the secondary sources is givenAiio; W) f {xo; w) , wherebyA( ) is the amplitude distribution
of the self-bending eld along the reference plane, The pfinepresents spatial differentiation.

4 Linear Arrays

Planar transducer arrays are inconvenient as the requinedber of elements is high. When
wave eld synthesis inside a given plane is targeted, then khear arrays may be employed.
The driving function®( ) are identical to those for planar arrays apart from a glategjufency
dependent factor. This type of scenario is termed 2.5-dsmoeal and is well known in sound
eld synthesis [1]. The curvatures of the wave fronts thatleg are identical to the prescribed
ones inside the target half-plane. The control over the angd@ decay of the synthesized eld
over distance to the array is limited. The synthesized waald is obviously invariant with
respect to rotation about the axis through the array's etlésme

For convenience, we assume a linear array of transducees IBare to the reciprocity of
the Helmholtz equation, we may interpret the beam as theiardpldistribution of the synthe-
sized sound eld (when loudspeakers are assumed) or astaapldistribution of the array's
sensitivity (when microphones are assumed).

5 Optimal Array Pattern Synthesis

A vast amount of literature exists on numerically optimabgrpattern synthesis in the domain
of beamforming both for signal-dependent scenarios asagelbr the present case of signal-
independent scenarios [15]. A variety of optimality ciidegxist. A typical criterion for signal-
independent far eld scenarios is maximizing the so-calldute noise gain (WNG) [10], which
represents the gain of the target signal (i.e., the desigg@B that the beamformer achieves
relative to spatially white noise. A convex solution incorating a constraint on the WNG of
a far eld beamformer is presented in [13]. This scheme isawtvenient in the present case
as it is inconvenient to de ne what is the location of the &rgignal as there are many useful
options.

We therefore adapt the approach that is typically appliedear eld beamforming: We as-
sume a discrete set of array elements and nd the set of wefxo; w) that minimize the
beam amplitude in the dark zone (signals from which are gedro be suppressed) while main-
taining unit amplitude at the target location [12]. This ¢ead to very aggressive and therefore
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non-robust solutions, which are not applicable when theaetrray exhibits the slightest devi-
ations from the assumptions. A lack of robustness is tylyiead indication for a large range of
gains of the array elements. Regularization can be applieith modi es the solution in order

to squash this range at the expense of an (uncontrolledgtiedun performance.

We employ the convex approach from [7] here in which we spetié performance and
aim at nding the set of gains with the lowest nok( )k that enables the desired perfor-
mance.D( ) is the vector containing the weights of all (discrete) ambgments. Searching for
the lowest norm inherently squashes the range of weights neiaxation of the performance
requirements.

More explicitly, the present optimization problem reads

minkD(Xo; w)k 3)

subject to
G(Xo;Xt; W)D(xg;w) = 1; (3a)
iG(x0;xa;W)D(Xo;w)j  10% (3b)

wherebyC denotes the desired attenuation in dB at the control pgjntsthe dark zone relative
to the target location control poirt in the bright zone.

2
e TMG(xg1; X¢; W)
e 12 G(xg.0: Xt; W
Glxaw = §° S0 @

e INWMG(xon;Xt; W)

is a vector containing the transfer paths from bhendividual array elements indexed Ioyto
the target location in the bright zone, and

e MMG(xgrxaw) i e MNMG(xoN; a1 W)
e MMIG(xg 1 xg2;w) 10 e INWMG(xgN;Xg2; W)

G(Xo; Xd; W) = g A . o (5)
e MMG(xg;xamiw) i e MNMG(xon; Xam; W)

is a matrix containing the transfer paths from théndividual array elements to thd control
points in the dark zone. Note that we search for purely B§a). The phase engineering is
performed by incorporating the caustics-based phase @ifo(kg; w) into the transfer paths
G(Xo; Xd; W).

6 Results
Refer to Fig. 2 for sample monochromatic self-bending bebdased on the caustic that is

de ned by (1) and depicted in Fig. 1(a). The array of isotmofonopole) elements extends
along they-axis fromy = 0 toy= 25/ . Fig. 1(b) depicts the phase pro le that was imposed
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Figure 2: Magnitude in dB of the beam of a sample linear arrdybd isotropic (omnidirec-
tional) elements of length £ 25/ located on the y-axis; the element spacing is
Dy = 0:5/ (i.e. critically spaced); the black marks indicate the Itoas of the array
elements; the black line represents the caustic
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Figure 3: Sensitivity of the array from Fig. 2(b) in the prese of a rigid spherical scattering
object (indicated by the white disc)

on the array elements. Fig. 2(a) shows the resulting beanlitaoig when an equal purely
real gain is imposed on the array elements additionally éoptiiase pro le. This corresponds
to the approaches presented in [17, 18]. The attenuatioheimqtiet zone is in the order of
20 dB compared to locations along the caustic. Fig. 2(b) shibve resulting beam when a
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cosine-squared shaped weighting is imposed on the arrayeals. The difference to Fig. 2(a)
is eminent [2]. A pronounced quiet zone evolves south of gustc indicated by the black line.
The attenuation in the quiet zone is in the order of 60 dB orenommpared to locations along
the caustic. Note that the cosine-squared shaped ampfitade works well in the present
scenario. It cannot be considered a general solution.

A noteworthy property of the beamformer is that it rejectsalnd that originates from the
dark zone directly or indirectly. This means that it alse®ot$ all signals that are re ected by
objects located in the dark zone. This circumstance istitisd in Fig. 3, which shows the
beamformer from Fig. 2(b) but with a rigid spherical objegent in the dark zone. Note that
the presence of this object does not in uence beamformerisisivity.

Fig. 4 depicts the numerical solutions for the scenario fFaga 2(b) according to (3).

A remarkable observation is that although we are solvingf@8)purely real weights in
Fig. 4(a)-(c), it is generally not such that all weights diththe same algebraic sign like our
physical model of phase and magnitude would suggest it.e(M@tt a change in sign is equiva-
lent to a phase jump by.)

Another important observation when comparing Fig. 4(3)igchat the choice of control
points has a fundamental effect on the spatial evolutioh@bieam [3]. The mere prescription
of a phase pro le onto the array elements does not narrow dbe/solution space suf ciently.
However, it seems unreasonable to sample the dark zonelgews#ie control points. The
contour in Fig. 4(c) is a shifted copy of a segment of the preed caustic and constitutes a
useful choice. It prevents the beam from entering the danke zo

Instead of solving (3) for purely real weights, we can, ofrsay also skip prescribing a phase
pro le and solve for complex weights. At rst sight, we areetteby removing all physics from
the problem. However, by using the same control points Ik€&ig. 4(b), we are inherently
assuming the solution to be related to the modelled cauBhe.result depicted in Fig. 4(d) is
very comparable to Fig. 4(c). Bear in mind that we have twasrthe amount of variables to
solve for (the real part as well as the imaginary part of thegtits) so that it appears useful to
choose two times as many control points. Remarkably, thétneg phase pro le is very similar
to the manually derived one apart from a constant offsettfs=eop-left inset in Fig. 4(d)).

Fig. 5 depicts variations of the scenario from Fig. 4(c)..Bi@) uses a control point spacing
Dxq that is precisely &/ , whereas Fig. 5(b) uses exactly the same contour of cortrotgpbut
only half the amount and witBxq = | . Note that the problem is signi cantly underdetermined
in the latter case. Still, the problem is solved, i.e., theroation conditions (3a) and (3b) are
ful lled, and the resulting beam pattern is useful. Keepig = | but using a suf cient num-
ber control points to have an overdetermined solution aggndta) increases the attenuation in
the dark zone. This suggests that the control point spd2xgds not the only decisive factor.

The underdetermined solution with narrow control pointcspg in Fig. 5(c) is also viable
(the optimization conditions (3a) and (3b) are ful lledytithe resulting dark zone is smaller
than desired.

Fig. 6 and 7 depict a self-bending beamformer based on aicgigtn by the polynomial

y= 001 (x+2)3 006 (x+ 2)%+ 0:32; (6)

and Fig. 8 depicts a self-bending beamformer based on tlyagalial from (6) but rotated by
30 . This yields a curvature of the caustic that is signi cantipre gentle than the one from
the previous gures.
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(b) Phase pro le from Fig. 1(b) and optimal
real weights; 52 control points were used (51
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Figure 4: Magnitude in dB of the beams produced by the arrayfiFig. 2 using optimal so-

lutions according td3); C =

80 dB; the white cross marks the control point in the

bright zone; the white points mark the control points in tlaekdzone; the top-right
inset shows the resulting real gain pro le (orange) with t@sine-square pro le as

reference (blue)

Using the phase pro le determined by the caustic as well assine-squared amplitude
pro le yields a useful beam pattern as depicted in Fig. 6(&pr investigating the optimal
solutions, we always use the same 205 control points in tHeztme but vary the location of
the target control point in the bright zone. Fig. 6(b)-(dp¢the result of the optimization for
complex weightdD( ). It can be seen that the a dark zone arises in the desired marime
structure of the beam in the bright zone varies signi cantith the location of the target control
point x;. Choosingx; close to the caustic causes the strongest gradient of thme akmg the
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Figure 5: Variations over the scenario from Fig. 4(c)

caustic. The resulting phase pro le can depart considgritbm the one derived based on the
prescribed caustic (see the bottom insets).

Fig. 7 depicts the same scenario but with the phase pro Isquileed and optimized for purely
real weights. Remarkably, the resulting beam departs smmtly from the desired one. It is
even such that the optimization problem is not solved in F{Q) and (c). This is despite the
fact that the prescription of the caustic's phase pro le @dteaningful physical contraints to
the problem.

Finally, Fig. 8 uses the caustic described by (6) and rothte@0 . The observations are
equivalent to the ones made with Fig. 6 and 7, i.e., a dark fnnes as desired, the structure
of the beam in the bright zone depends strongly on the latafithe target control point in the
bright zone, and imposing the manually derived phase prede lead to unusable results. We
only present the simulations of the optimization for the pter weights for convenience.
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Figure 6: Magnitude in dB of the beams produced by a criticaibaced array of length£ 50/
using optimal solutions according {8) for different locations of the control poirxt
in the bright zone; G 80 dB; the caustic is given b{6); the white cross marks;
the white points mark the 205 control points in the dark zdahe;optimization was
performed for the complex weight$Dw); no phase pro le was imposed

7 Conclusions

We investigated the impact of the control point locationsoptimal solutions for self-bending
beamforming. We showed that the choice of control pointhadark zone has to be made
with care so that the dark zone actually evolves as desireelelis somewhat more freedom in
choosing the target control point in the bright zone, whiah bave a considerable impact on
the structure of the beam in the bright zone.

The problem may be underdetermined and still solvable. €ihgaso few control points that
an underdetermined problem evolves seems to have an uafdga@ffect on the attenuation in
the dark zone. Similarly, the spacing between the contrwitpan the dark zone may be larger
than half a wavelength. The loss in attenuation is only matgdan this case.

10
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Figure 7: Same scenario like in Fig. 6 but with the manuallyivkd phase pro le imposed (and
optimized of the purely real gains)

Certain types of self-bending beams do not bene t from pibsty a phase pro le, which
was manually derived from the caustic underlying the setiebng wave eld. Quite in con-
trary, we have achieved as good or sometimes even much beligions when optimizing for
the complex beamformer weights without prescribing anysphmo le and therefore no explicit
consideration of the desired caustic. This caustic isigtifilicitly considered due to the choice
of the locations of the control points. This suggests thatimising the norm of the beam-
former weights is not the most ideal approach for the prgseafitlem. A more physics-inspired
solution is desired.

The investigation of the robustness of the approach wasruketfwe scope of this paper. The
reader is referred to the results from [2] obtained that wdrgined with a cosine-squared
window.

11
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Figure 8: Same situation like in Fig. 6 but with the caustitated by30

APPENDIX: DERIVATION OF THE SECONDARY SOURCE PHASE PROFILE

Consider the driving functio®(xq; w) for the secondary source &§ to synthesize a sound
pressure eldS(x; w) as given by (2). The directional gradiewgﬁ is de ned as [4]

% = cownsinbn%(+ sinansinbnﬂly+ cosbnﬁlZ : (7
with a,, being the azimuth of the orientation nfand b, being the colatitude. For the present
case ofn pointing in positivex-direction, =1n simpli es to T=1x.

Recall that we assume stationary conditions and time-haicsagnals in this paper. We may
expressS(x; w) as
Sx; w) = A(x; w)e’ 5w (8)

with purely real amplitudé\(x; w) = jS(x; w)j and purely real phase(x; w) = \ §x; w). Dif-

12
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ferentiation of (8) with respect to any of the Cartesian disiens yields

AYx; w)ef W) 4+ A w) f 6w °
AYx; w) + A w)if Y w) ef 6w
w A(x; w) f {x; w)df w+is . (9)

A(x; w)ef 6w °

where in the last step we made use of the stipulated assumtpab the high-frequency limit
applies, i.e. ﬁ—”nA(x; w) TnA(x; w) , which is known as theikonal approximatiofi6].

0
. . if (X; .
Recall that (2) states thBY(xo; w) p A(x; w)e W) X=%o" We can deduce from (9) that, in

the high-frequency limit, the phase pro fgxg; w) of the driving functiorD(Xxg; w) is identical
to the phase pro le of the desired sound eld on the secondayrce contour and the term
A(x; w) f {x; w) in (9) represents the (purely real) weight pro le to be apgli
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