A LINEAR SENSOR ARRAY WITH SELF-BENDING SENSITIVITY
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ABSTRACT

Self-bending wave fields exhibit an envelope that seemibglyds
in space under free-field conditions. They are created b \frants
that fold along a caustic. In this paper, we invert the cohbgpex-
ploiting the reciprocity principle of the Helmholtz equatiin order
to create a linear sensor array whose sensitivity seembregigs in
free space in the nearfield of the array. The sensor arragftirer
allows for listening around a distracting source, a jammes, phys-
ical object as sensitivity nulls can be placed at a defingduie. We
illustrate the operating range and the robustness of thtisonlbased
on numerical simulations. For the presented scenario tantgttion
of more than 50 dB in a controllable region in space is achiévex
frequency range of more than two octaves.
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same direction like the target signal cannot be attenuatawd) this
approach. Nearfield beamforming exploits the distance riigece
of the curvature of wave fields so that nulls can be placed efinetl
distance whereby it is typically assumed that the signalcssuradi-
ate spherical waves [8, 9, 10].

We propose a new category of nearfield beamformers that use

a more advanced wave propagation model, which allows fagdes
ing the distance-dependent nearfield sensitivity of theyama more
explicit fashion. We use the example of an array of presstlceom
phones to illustrate the approach. The results hold for argyaf
isotropic sensors.

2. SELF-BENDING WAVE FRONTS

Index Terms— sensor array, self-bending acoustic beams,Non-spreading Airy wave packets were predicted in [1]. Tiveye

nearfield beamforming, null steering

1. INTRODUCTION

Self-bending wave fields were first predicted in the field airgum
mechanics [1] and made their way to acoustics via opticdf2dp-
tics, a phase profile isimposed onto a beam of light via a pimeasi,
e.g. a transparent material of appropriately varying théds [3].
The phase profile that is imposed is taken from an optical irave
that forms a caustic. A caustic occurs if the family of rayat tfepre-
sent the wave front exhibit an envelope and are tangent tetive-
lope. This envelope is then referred to as caustic. The sameept

was applied to acoustic fields by [4, 5] using an array of atous

transducers that controlled the phase profile of the evglgiound
field.

theoretical constructions in the original formulation hey exhibit
infinite energy (similar to plane waves). Finite-energy ragpma-
tions were then observed with light in [2]. In [4, 5], the cept was
translated to acoustics and a method for creating a sountitfiat
seemingly bends along a convex trajectory in free spaceoutitiiny
external force was presented. Obviously, the wave itsaibisac-
celerated. Rather, the amplitude envelope of the sounddjgdars
to be bent. The concept of [4, 5] is illustrated in Fig. 1. As@aiis
pre-defined along which the wave front folds. In the higtgérency
limit, the wave front does not traverse the caustic. It isongnt to
note that the self-bending waves evolve only in the higlpiecy
limit. This high-frequency limit is fulfilled if the consided wave-
length is much smaller than the curvature of the caustic.e\dener-
ally, any significant changes to the wave amplitude have atve\at
length scales much larger than the wavelength. Note thatathstic

Here, we propose to invert this concept to create a sensor aneeds to be convex in order that the wave perfectly avoidsengi

ray with self-bending sensitivity by exploiting the reaipity of
the Helmholtz equation. This allows for creating confinedtigh
regions of very low sensitivity so that the sensor array ésien

arounddistracting sources, jammers, or obstacles that are lbeate

a given distance.
A related concept in array beamforming is termedl steer-

ing [6, 7]. Here, the complex weights of a sensor array are dedign

such that the sensitivity of the entire array vanishes invargidi-
rection. Typically, null steering is performed in the fagfl regime
and the weights of the individual elements of the array aterde
mined via numerical optimization. A jammer that appearshia t

region in the high-frequency limit.
We choose the sample caustic from [4], which is given by the
cubic Bézier curve
B(t) = (1—1t)>Bo +3t(1—t)>B1 +3(1 —t)t*B2 +t*Bs , (1)
with
Bo = [0, —0.2311]",
Bo = [0.25,0.1689] ",

B; = [0.1,0.0189])"
Bz =[0.98, —0.3311]" |

to allow for a direct comparison of the results. We limit otnser-

*Jens Ahrens is supported by the German Academic Exchangeser vation,s to ther-y-plane so that we dTefine the four points that define
(DAAD) and by grant AH 269/2-1 of the German Research Fouadat the Bézier curve a3; = [z4,%:,0]". The red line in Fig. 1 il-
(DFG). lustrates (1). Note that the control variabldoes not represent the
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(a) Equal amplitude of 1 imposed on all array elements

Fig. 1. Schematic of the principle of self-bending wave frontg th
red line indicates the prescribed caustic given by (1); tag ines
are sample tangents of the caustic; the blue/green linesaanple
wave fronts; time may evolve from blue to green as well as from
green to blue

traveled distance along(t), nor is it directly proportional to time
when a wave moves along(t).

Itis illustrated in [4] how the geometric wave fronts can loac
structed from a preset beam trajectory via Legendre tramsftoons.
The wave fronts can then be traced back to a given refereace pl
on which their phases can be evaluated. For ease of illisirate
do not reproduce the analytic transformation but rathesetfaack
the wave fronts numerically.

Once the phase profile of the desired wave field is known on the
reference plane, i.e. on the plane on which the secondargeoare
located, the appropriate secondary source driving sigreadde de-
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termined via Rayleigh’s first integral formula, which is givby [11] 0 10 20 30 20 80
© 5 x/A
P(x,w) = // 2%5()@“)‘,{:,‘0 G(x,%0,w)dA(x0) . (2) (b) Cosine-squared amplitude profile imposed on the areyehts
T — ——
=D(xq,w)

Fig. 2 Sensitivity of a sample linear 51-element pressure-

P(-) denotes the harmonic scalar wave field that evolves due to t@licrophone array of IengtliL' = 25A located on they-axis; the
monopole distribution along the reference plan@(x, xo,w) = iensorf_?ﬁacmg 'g‘y_ ; Ol'j’)"ktkl'.e black marlt<s tlrr:dlcate Fhe I_oca—
1 emi/eboxal e froe field Green's function, ie. the spatio- HONS Of the sensors; the black line represents the cawstirming

Ir T Jx—xol ) a frequencyf = 2000 Hz, this yieldsA ~ 0.17m, L = 4.3 m,
temporal transfer function of the secondary monopole ®suf€(-) Ay — 0.086 m

is an arbitrary virtual scalar wave field that is source-frethe tar-

get half-space that is bounded by the reference plaio¥(-) is an  driving functionsD(-) are identical to those for planar arrays apart

infinitesimal surface element. from a global frequency dependent factor. This type of sgena
When the secondary monopoles are driven with two times théermed 2.5-dimensional and is well known in sound field sgnth

gradientd/on of S(-) in direction normal to the boundary and eval- sis [12]. The curvatures of the wave fronts that evolve aeatidal

uated at the boundary, then the synthesized wave Rélylis identi-  to the prescribed ones inside the target half-plane. Theaawver

cal to the virtual (prescribed) fielf(-) inside the target half-space. the amplitude decay of the synthesized field over distandeetar-

It is proven in the Appendix that the driving sign8(-) is directly ~ ray is limited. The synthesized wave field is obviously im&at with

proportional to the phase of the harmonic field at the passtiof the ~ respect to rotation about the axis through the array’s aitsne

secondary sources. Refer to Fig. 2 for sample synthesized sound pressure fields
Itis therefore possible to create a self-bending wave bysipyg ~ based on the caustic that is defined by (1) and depicted inlFig.

the back traced phase profile of the self-bending wave ontareap  The isotropic (monopole) transducer array extends aloag-#xis.

array of sufficiently densely spaced transducers. Thisagmpris  Fig. 3 depicts the phase profile that was imposed on the aleay e

termedphase engineerinffl, 5]. The amplitudes of the transducers ments. Fig. 2(a) shows the resulting sound field when alyate-

are set equal in [4, 5]. ments exhibit equal amplitude. This corresponds to theagmbres
Planar transducer arrays are inconvenient as the requined n presented in [4, 5]. The attenuation in the quiet zone is énatfder

ber of elements is high. When wave field synthesis inside angiv of 20 dB compared to locations along the caustic.

plane is targeted, then also linear arrays may be employdee T Phase engineering does not indicate the amplitude weigats t
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Fig. 3. Unwrapped phase profil&(-) of the arrays depicted in Fig. 2;
the black marks indicate the values at the individual sensor
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Fig. 4. Sensitivity of a single sensor with amplitude weight 1; all

marks from Fig. 2 are included for orientation; the ampléutbr-
malization is identical to Fig. 2

need to be applied to the transducers. Still, we may expatttie
amplitudes of the transducers have significant impact orsdoed
field that evolves. Fig. 2(b) shows the resulting sound fietheava
cosine-squared shaped weighting is arbitrarily imposetherarray
elements to show the effect. The difference to Fig. 2(a) isent.
A pronounced quiet zone evolves south of the caustic ingithy
the black line. The attenuation in the quiet zone is in theepaf
60 dB compared to locations along the caustic.

The original experiments of self-bending optical fields m@e
similar to the scenario depicted in Fig. 2(b) rather than E{g). In
those experiments, the desired phase profile was imposedwos: G
sian beams of light, which exhibit a bell-shape amplitudefife
along their cross-section.

3. RECIPROCITY OF THE HELMHOLTZ EQUATION

Assuming stationary conditions and time-harmonic sigribiswave
equation may be formulated conveniently in frequency domiis
then referred to aslelmholtz Equatior[11]. This formulation is
particularly convenient as it exhibits a simple reciprpai¢lation:
We may swap the source and the receiver positions in a gitag-Si
tion [13]. In the present context, we can replace the isadraptua-
tor array with an isotropic sensor array. The sensitivityhef sensor
array to a monopole source in space is identical to the stierighe
wave field caused by the actuator array at a given receivatitot
assuming that the same phase and amplitude profiles areechpas
the actuators/sensors.

y/A

0 10 20 30 40

(a) The same scenario as in Fig. 2(b) but for a broadband Isiguna
ering two octaves; the black arrow indicates the impact ofating
the high-frequency requirement; the white arrows inditagsimpact
of spatial aliasing; the color scale is identical to Fig.)2¢he black
circle mark the locationg; andxs that are evaluated in Fig. 6
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(b) The same (monochromatic) scenario as in Fig. 2(b) burt waib-

dom displacement of the array elements alongytfaeis according to
a normal distribution with 0 mean and standard deviatiof. 2\ y

Fig. 5.
microphone array of lengtlh, = 25\ located on they-axis; the
sensor spacing Ay = 0.5); the black marks indicate the locations
of the sensors; the black line represents the caustic

pressure microphones, this means that the amplitude ofcilneds
pressure evoked by an array of monopole sources at a givatidnc
is identical to the sensitivity of a similar pressure midrope array
to a monopole source at the considered location. Fig. 2fitrerde-

picts both scenarios. This equivalence was confirmed byutiees

via numerical simulations.

4. RESULTS

The sensor array suppresses energy originating from sotivaeare
located in the quiet zone. The most interesting observasiaghat
the quiet zone does not extend along a line as it is the casenin ¢

Formulated for the example of monopole sound sources andentional farfield null steering [6, 7]. It is rather distendependent

Sensitivity of a sample linear 51-element pressure-
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Fig. 6. Transfer functions fronx; = (10,5) andxs = (30, 5)
to the output of the sensor array; the setup is identical go ${a),
i.e. the sensor spacinjy = A\/2 at f = 2000 Hz; x; andx, are
marked in Fig. 5(a)

4.2. Robustness

The underlying filter-and-sum design of the beamformer iples
good robustness [6, 7]. This is illustrated in Fig. 5(b), ethdepicts
the same monochromatic scenario as is Fig. 2(b) but with doran
displacement of the array elements along gh&xis according to a
normal distribution with 0 mean and standard deviation of20f
the inter-element spacingy. Note that this constitutes a massive
displacement. Yet, the array achieves an attenuation efakl0 dB

in the quiet zone with respect to the most sensitive location

5. CONCLUSIONS

We proposed to invert the concept of self-bending wave §raoot
create a nearfield sensor array with self-bending sertgit8iich an
array allows for listening around a distracting source oobstacle.

so that energy from sources at a defined distance can be sapgre The approach for determining the phase profile that is inghase
In other words, we can listen around a jammer or around a physihe sensors was justified via Rayleigh’s first integral foamuwe

cal obstacle. This capability is obvious when comparingdatray
sensitivity depicted in Fig. 2(b) to the sensitivity of anfytibe indi-
vidual sensors that the array is composed of. Refer to Fighith
shows the sensitivity of a single sensor with amplitude Wweit
The array’s sensitivity can be several 10 dB higher thandghatsin-
gle sensor in regions where a high sensitivity is desiredsaveéral
10 dB lower in regions where attenuation is desired. Noté tthex
largest weight that was applied to the sensors in Fig. 2(alsis 1.

The attenuation in the quiet zone that is achieved by the pre®

sented approach is well beyond that of conventional nedtfiedm-
forming [8, 9, 10]. Note, however, that a comparison is difi@s
the presented approach requires arrays that are signi§idarger
than those typically used in conventional nearfield beamiiog.

4.1. Broadband Performance

Fig. 5 depicts the broadband performance of the array frgmb).
The absolute transducer positions are identical to Fig, 2¢ the
spacing is a half wavelength Ats = 2000 Hz. A frequency range of
two octaves betweef4 fref and 1.6 fref Was sampled at intervals o
20 Hz and the complex sensitivity was accumulated. The gpjate

illustrated that the sensors’ amplitude profile can havestzutial

impact on the performance of the array. Robustness and lodd
performance were also investigated. We showed that the esitien

in the quiet zone can be maintained even for sensor spadiagare

slightly larger than half a wavelength.

APPENDIX: DERIVATION OF THE SECONDARY SOURCE
PHASE PROFILE

Consider the driving functioi®(xo,w) for the secondary source at
X to synthesize a sound pressure fifltk, w) as given by (2). The
directional gradienta% is defined as [14]

o ®)

= COS Qin sinﬁné% -+ sin an sinﬁné% + cosﬁn% ,

with an being the azimuth of the orientation afand 3, being the
colatitude. For the present caserppointing in positivez-direction,

¢ O/0n simplifies tod/dz.

Recall that we assume stationary conditions and time-haieno

phase profile was determined for each frequency and theubsol Signals in this paper. We may expresgx, w) as

sensor positions were fixed.

Reducing the frequency tends towards violating the high-

frequency assumption underlying the approach so that mame
spills over into the quiet zone (black arrow in Fig. 5(a)).

Increasing the frequency beyorfids violates the sampling cri-
terion. Assuming that two sensors are required per waviiettgen
the spatial aliasing frequency of the considered array i$ at
2,000 Hz. Actually, the sampling criterion for spatial samplirgy i
somewhat more complicated as the resulting signal (thetsety$
has more spatial dimensions than the sampled signal (thee @val
amplitude profile of the array elements) [12]. Still, askiiog two
sampling points per wavelength is a convenient rule of thumb

Interestingly, violating the sampling criterion does noniedi-
ately render void all efforts. It is rather such that sideg®lrise for
the directivity that point into directions that are at snzaiples to the
array (white arrows in Fig. 5(a)). A similar observation waade
in [4]. Note that the sampling criterion is violated by a farcof 1.6
in Fig. 5(a) yet maintaining acceptable performance.

Fig. 6 illustrates the broadband sensitivity over an evetdewi
frequency range for 2 selected sound source locations. iStende-
dependent sensitivity vanishes when the sampling criteésovio-
lated by a factor of 3.5 or higher.

S(x,w) = Ax,w)e ) 4)
with purely real amplituded(x,w) = |S(x,w)| and purely real
phaseg(x,w) = £S(x,w). Differentiation of (4) with respect to
any of the Cartesian dimensions yields

(A(X,w)eid’(x,w))/ — A/(x7w)ei¢(x¢w) +A(X7w) (6i¢(x,w))/
= [A’(x,w) + A(wi)i(ﬁ/(x,w)} REICIR)
= A(Xvw)¢/(x7w)ei¢(x"")+i% , (5)

where in the last step we made use of the stipulated assunthtb
the high-frequency limit applies, i.6:2 A(x,w)| < |£nA(x,w)|,
which is known as theikonal approximationfl5].

Recall that (2) states tha(xo, w) oc (A(x,w)e <)) | .
We can deduce from (5) that, in the high-frequency limit, phase
profile ¢(xo,w) of the driving function D(xo,w) is identical to
the phase profile of the desired sound field on the secondargeso

contour and the terml (x, w)¢’(x,w) in (5) represents the (purely
real) weight profile to be applied.
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