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ABSTRACT

Models of sound source directivity that are based on spher-
ical harmonics have been applied in diverse scenarios in-
cluding wave-based room acoustic simulation, spatial au-
dio, and urban sound propagation. The measurement of
directivities of real-world sound sources that are not elec-
troacoustic transducers exhibits fundamental limitations in
terms of the accuracy and spatial resolution than can be
achieved. Particularly if the directivity is measured only
in a plane or over a limited solid angle range, a classi-
cal spherical harmonic representation cannot be computed.
In many cases it is also such that angle-dependent direc-
tivity data are available only at a sparse set of frequen-
cies. We demonstrate in this paper that complete spherical-
harmonics-based directivity models can be obtained from
such sparse measurement data by interpolating the avail-
able data over both the angle and the frequency and then
imposing the result onto a spherical wave. We present re-
sults based on publicly available directivity data for the hu-
man voice as well as for directivity data in the Common
Loudspeaker Format. The presented directivity models are
available for download.

1. INTRODUCTION

Representations of sound source directivity in terms of
spherical harmonic (SH) expansion coefficients have been
demonstrated to be an excellent match to advanced ap-
plications like wave-based room acoustic simulation [1]
and virtual reality applications [2]. While geometrical
acoustic simulations often use directivity data subsumed
in frequency bands, the SH-based representations require
a complete model of the directivity, particularly w.r.t. to
time/frequency.

Directivity is usually measured with a microphone ar-
ray that encloses the sound source (or a corresponding se-
quence of single-point measurements). A significant num-
ber of datasets of the directivities of various types of sound
sources have been acquired, and some are publicly avail-
able. These include the human voice when talking and
singing (see, for example, [3] and the references therein),
musical instruments (see, for example, [4] and the refer-
ences therein), as well as loudspeakers (for example, on
the website accompanying the Common Loudspeaker For-
mat CLF [5] or in [6,7]). Data on machinery tend to be
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more limited but are available for vehicles such as cars [8],
trains [9], and wind turbines [10], for example.

There are no fundamental limitations in the measure-
ment of loudspeaker directivities as arbitrary measurement
signals can be employed. Still, most available databases
provide data only at selected frequencies or averaged over
frequency bands. The situation is fundamentally differ-
ent when considering musical instruments, machinery, or
other radiating objects that are not electroacoustic trans-
ducers. In these cases, there are fundamental limitations
in terms of how the source can be excited, as the source
itself is difficult or impossible to separate from the instru-
ment/machine behaviour. In [4], for example, the direc-
tivities of musical instruments were measured by having
trained musicians play steady notes, identifying the sta-
ble partial oscillations, and manually reading magnitudes
and phases at the corresponding frequencies from the sig-
nals captured by the microphones of the surrounding array.
Machinery will require measuring quantities like the time-
averaged sound pressure radiated in different directions.

What most—if not all—directivity data for non-
electrocoustical sound sources have in common is that
frequency-domain data is sparsely sampled. This requires
interpolation in frequency, which is straightforward for
magnitude spectra but not possible for phase spectra as
we will explain in Sec. 2. It is not possible to compute
complete SH models of directivities without phase infor-
mation because the phase information encodes a signifi-
cant amount of information on the curvature of the radiated
wave. This technically excludes all data mentioned above.
Note that the reconstruction of time signals from the mag-
nitude spectrum as in [11] constitutes a different scenario
as no interchannel dependency via the wave equation is ap-
parent.

In this paper, we illustrate how the approach presented
in [2, 12] can be used to augment such sparse directivity
data to obtain a complete SH-based model. The approach
essentially consists of imposing a wave front curvature on
the directivity. This allows for the required interpolation to
be performed. We present two examples: 1) A loudspeaker
directivity that is available at densely sampled direction but
only at a sparse set of frequencies and only in terms of the
magnitude. This example is inspired by CLF. 2) The di-
rectivity of a singing voice that is available densely with
respect to frequency but sparse with respect to the direc-
tion.



2. THE LIMITATIONS OF PHASE
INTERPOLATION

In this section, we demonstrate the fundamental limitations
that arise when interpolating a phase spectrum. The princi-
ples apply to both interpolation along the frequency as well
as along the angle. Interpolation along the frequency has
shown to be very problematic with undersampled spectra
whereas interpolation along the angle seems less critical.
Some insight into phase interpolation along the angle is
available [13, 14] but final conclusions cannot be drawn.
Note that computing a spherical harmonic representation
of a directivity in frequency domain based on measure-
ments at discrete angles constitutes an interpolation along
the angle. Contradictory results have been presented, for
example, on whether separate interpolation of magnitude
and phase of head-related transfer functions or binaural
room transfer functions along the angle is favorable over
interpolation of the complex spectrum [14—-16].

Assume that the sampling of the frequency axis in the
data under consideration fulfils the Nyquist criterion. In
this case, unwrapping has to be applied before any consid-
erations of interpolation along the frequency can be made.
As an example, assume that the measured directivity of
a sound source that produces a perfect spherical wave is
available on a given grid of measurement locations. A
high signal-to-noise ratio (SNR) of the resulting transfer
functions requires the sound source to produce a sufficient
sound pressure level across the entire frequency range. All
compact real-world sound sources are inefficient radiators
at low frequencies so that a noisy transfer function has to
be expected at the corresponding frequency bins. The DC
bin is purely real so that its phase is always guaranteed to
be 0 [17]. Assume that solely the frequency bin with index
k = 1 is noisy so that the measured transfer functions are
all identical at all bins with index k& > 1. The phase of the
transfer function at bin 1 might be —0.97 at a given mea-
surement location and, say, 0.9 7 in an adjacent measure-
ment location (cf. Fig. 1(a)). After unwrapping, this results
in a phase offset of 27 between the two measurement lo-
cations for all bins at £ > 1 as depicted in Fig. 1(a). Note
that the information is still identical at the said bins, it is
only the representation of the information that deviates.

Interpolating between the two given measurement loca-
tions will result in a phase spectrum that is offset by 7 at
the direction half-way between the two measurement loca-
tions. A phase offset of 7 is equivalent to a change of the
algebraic sign of the signal as

|S(w)| . eiZS(w):l:ﬂ' — |S(w)| . eiZS(w) — —S((JJ) ) (1)

In other words, interpolation of the spherical wave between
two measurement locations may produce a lobe flanked by
two nulls. Recall that one single noisy bin is sufficient for
this to occur.

Similar limitations arise with data that are not available
at all frequencies. Unwrapping of the phase is not pos-
sible with such data, which can result is similar issues as
described above. Fig. 1(b) illustrates this. It is indeed pos-
sible to impose a linear phase slope onto the sparse data to
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Figure 1. (a): Phase spectrum 1 and phase spectrum 2 dif-
fer only at bin index k& = 1. Unwrapping causes an offset
of 27 for all k£ > 1. (b): The light gray curve represents the
data from the dark gray curve sampled at bins & = (0, 5).
Interpolating the sparse phase spectrum can result in an
offset of 7 to the original data (for example at k£ = 3). The
result is of limited use also for any other offsets that arise.

model the propagation delay that the directivity comprises.
One may unwrap based on this. However, the same issues
that were illustrated in Fig. 1(a) are still apparent.

Summing up, the usefulness of phase interpolation is
questionable under the given circumstances. Phase inter-
polation along the angle seems to cause less problems than
interpolation along frequency but more insight is required.

Note that some directivity data sets provide phase data
in frequency bands. Presumably, the data have been ob-
tained by averaging the original phase spectrum as per-
formed in [4]. The usefulness of averaged phase is entire
unclear.

3. OUTLINE OF THE THEORY

The term directivity with regard to acoustic sources has
been defined in various ways in the literature [5, 18, 19],
[20, p. 204]. Here, we define directivity as the spatio-
temporal transfer function (STTF) of a sound source un-
der free-field conditions, evaluated at arbitrary spatial lo-
cations. This is the most general definition, from which the
others above can be derived. We will assume that the direc-
tivity is evaluated on a spherical surface centered around
the source.

A source directivity W (r, v, w) is dependent on an an-
gular frequency w, in rad./sec, a radial distance r in m from
the nominal source center, and an angle 3-vector « defined
interns of azimuth angle « and colatitude S. It is defined
as
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and represents the radiated acoustic field exterior to a
sphere that is just large enough to completely enclose the
sound source [20, p. 206]. hl(l) (+) is the Ith order spheri-
cal Hankel function of first kind, and Y ,,, (y), defined for
integer [ > 0 and —] < m < [, are the SH basis functions,
which we are assuming to be purely real. Whm(w) are
coefficients that contain all information about the source
directivity.



The coefficients W, (w) follow from an approxima-
tion to

o 1
Wim(w) = W / . W(R,~,w)Yim(y)ds,
(3)

where W (R,~,w) is a directivity known on a spherical
surface with radius R that encloses the source, and 52 rep-
resents the unit sphere. Alternatively, a least-squares fit of
the coefficients to the spatially discrete measurement data
points can be performed based on (2) [1,21,22]. In either
case, only the coefficients up to a given order [ = L that
depends on the number and distribution of measurement
points can be obtained.

Evaluating the directivity W (r, v, w) in the limit of r —
o0 [20, p. 204], leads to the large-argument approximation
of the spherical Hankel function, and (2) simplifies to [20,
p. 204]
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Woo (1,7, w) is referred to as the far-field signature of the
directivity [23, p. 81]. Eq. (4) tells us that at sufficient
distance, a source of finite spatial extent radiates spherical
wave fronts (e!“= /r), the complex amplitude of which de-
pends on the angle and is represented by the coefficients
I/T/l,m(w). In other words, the angular dependence of the
directivity is imposed onto a spherical wave. How far this
sufficient distance has to be depends on the spatial extent
of the source and its distance from the coordinate origin
(which coincides with the nominal location of the source)
and on the frequency. The observation distance has to be
much larger than the largest dimension of the source. Clas-
sical polar diagrams display the magnitude of the far-field
signature W (1, v, w).

Since any relevant directivity will approximate a spher-
ical wave in a certain range of observation distances, it was
proposed in [2, 12, 24] to use the spherical wave model for
the entire range of the directivity from the nominal source
location to infinity. We obtain the spherical harmonic ex-
pansion coefficients by forcing the magnitude of the pro-
posed spherical-wave-based directivity to be equal to the
magnitude of the measured directivity on the measurement
sphere. We will use the term proposed directivity repre-
sentation (as opposed to the conventional directivity repre-
sentation, Eq. (2)) in the remainder of this paper to refer
to this representation. We refer the reader to [12, 25] for
details on the concept.

It is unclear at this point how to model the phase of
the directivity in the proposed approach. As discussed in
Sec. 2, in most cases, there is no useful phase information
available. A safe approach is to fit a minimum phase or
linear phase [17] function to the modeled magnitude direc-
tivity to impose the time-domain structure of the signals.
Other options are conceivable. Also, augmentation of the
data through recovery of the algebraic sign of lobes in the
directivity as proposed in [26] may be applied.

4. EXAMPLE 1: COMMON LOUDSPEAKER
FORMAT

The Common Loudspeaker Format (CLF) [5] was pro-
posed to allow for incorporating loudspeaker directivities
in room acoustic simulations. v1 supports magnitude data
on octave bands, and v2 in 3rd-octave bands. Phase in-
formation cannot be included currently. A large number of
loudspeaker models are available on the website [S]. These
data sets typically exhibit sufficiently dense angular sam-
pling, but the restriction of frequency bands makes the data
sparse with respect to frequency sampling.

We produced a CLF-like data from the extensive mea-
surement data on the IEM Loudspeaker Cube, a com-
pact loudspeaker with a cube-shaped enclosure, provided
in [27,28]. This allows us to verify the resulting directivity
against the ground truth. The directivity was available as
impulse responses measured on 648 equi-angularly spaced
points with a spacing of 10° on a spherical surface of ra-
dius 0.75 m. The propagation delay from the loudspeakers
to the measurement surface is not contained in the impulse
responses. A sufficient amount of silence was therefore
pre-padded before the processing to maintain causality of
the ground truth data. The IEM Loudspeaker Cube com-
prises four identical drivers. We used the data of driver 1 in
the following. We averaged the measured magnitude trans-
fer function on a linear scale in third octave bands. Fig. 2
depicts the original magnitude transfer functions as well as
the averages, which essentially constitute a data set in CLF.

We proceeded as follows to produce a complete spheri-
cal harmonic representation from the CLF-like data:

e We linearly interpolated the magnitude data on a lin-
ear scale over frequency for each direction for which
data were available and performed an optional third-
octave smoothing (cf. Fig. 2, black curve). It is un-
clear at this stage if the third octave smoothing is
beneficial at all. We applied it for ease of visibil-
ity. The interpolated spectrum matches the CLF data
points perfectly if no smoothing is applied. Other in-
terpolation methods are conceivable. Note that it is
unclear at this stage whether interpolation of mag-
nitudes is favorable on a linear scale or on loga-
rithmic one. Contradictory results have been pre-
sented [14, 15].

e We fitted a minimum-phase spectrum to the obtained
magnitude spectra.

e We added a delay corresponding to the travel time
from the coordinate origin to the measurement sur-
face to maintain causality.

e We performed an unregularized least-squares fit of
6th-order SH coefficients on the complex spectra.
The result is depicted in Fig. 2.

Note that a set of SH coefficients of a given order can-
not perfectly represent arbitrary measurement data because
the measurement data may be of a higher order. The
frequency-dependency and the angular dependency of the



Figure 2. Selected transfer functions of the loudspeaker
in the horizontal plane (gray), averaged in third octaves
(red), reconstructed from the third-octave averages (black
solid), computed from the proposed SH representation
(gray dashed)
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Figure 3. Balloon plots of the loudspeaker’s directivity at
1 kHz. Original data (left), 3rd-octave smoothed CLF-like
data (middle), and proposed SH representation (right). The
distance of a point on the hull from the coordinate origin
represents the magnitude of the directivity in the given di-
rection on a linear scale.

directivity are not independent in an SH representation.
One therefore has to expect that the data reconstructed
from the SH decomposition at the measurement locations
will depart somewhat from the data onto which the SH co-
efficients were fitted. This is evident in Fig. 2 (black curves
vs. gray dashed curves in the subplot on the right). This
is an inherent property of SH representations that cannot
be avoided. The classical order-limited SH decomposition
causes a significant roll-off of the time-frequency spec-
trum towards higher frequencies [29], which is not appar-
ent with the proposed representation [12, Fig. 1]. The latter
causes only moderate deviations.

Note that it can actually be an advantage in some sit-
uations that the SH fitting modified the magnitude of the
time-frequency transfer function as we will demonstrate in
Sec. 5. Fig. 3 shows example balloon plots of the original
measurement data as well as of the SH representation. A
certain amount of details is lost in the SH representation
because of the required order limitation.

As an application example, Fig. 4 depicts the time evo-
Iution of the acoustic field in an FDTD simulation, using
directivity data for the IEM loudspeaker cube, fitted to 6th
order, using both conventional and proposed representa-
tions. A Gaussian signal is used as input. The zone corre-
sponding to the driving distribution is indicated by a white
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Figure 4. Time evolution of a cross-section of the simu-
lated acoustic field emitted by the IEM Loudspeaker Cube,
at times as indicated, using a Gaussian input signal of vari-
ance 1 x 10~%. Here we use the directivity data of loud-
speaker 1, with a conventional representation (left) and the
proposed representation (right).

circle. We refer the reader to the Appendix for details on
the FDTD simulation framework.

The spherical curvature of the wave fronts of the pro-
posed directivity representation is evident in the right col-
umn in Fig. 4. In Fig. 5, directivity plots for the same data
set are shown, at various frequencies, here using output
signals drawn directly from the FDTD simulation over a
sphere of radius 0.75 m. The 6th order representations,
both conventional and proposed, give excellent agreement
with the original measured directivity data.
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Figure 5. Normalized directivity for FDTD output of the
data from Fig. 4 taken over a sphere of radius 0.75 m,
and at frequencies as indicated. Left: measured directiv-
ity. Middle: 6th order conventional representation. Right:
6th order proposed representation.

5. EXAMPLE 2: SINGING VOICE

The database [30] that accompanies [7] contains record-
ings of two classical singers performing a glissando over
one octave (i.e., a complex tone sweep). The set of partials
may be interpreted as a staggered sweep over a wide fre-
quency range so that the corresponding impulse responses
that represent the directivity of the voice can be computed
via deconvolution. The recordings were made with two cir-
cular microphone arrays with 32 elements each and placed
along the horizontal and median planes, respectively, at a
distance of 1 m from the singer’s head. Effectively, only
62 measurement points are available due to coincidence of
two of the microphones. We used the data from the file
IR_a_long_sweep.mat. Fig. 6 illustrates the mea-
surement locations.

Contrary to the CLF example from Sec. 4, which was
sparse with respect to the sampling of the frequency axis,
the deconvolution produces data points at all possible fre-
quency bins. We can still not perform a classical SH de-
composition like in (3) or a classical fit of SH coefficients
because the data set is sparse with respect to the angu-
lar sampling. It is not possible to obtain a general direc-
tivity representation as in (2) from these data for higher
than 1st order although the measurement points allow for

Figure 6. Reduced balloon plot for the measured directiv-
ity of the singing voice at f = 2.0 kHz. The horizontal and
vertical data points are connected by straight lines and are
plotted in different colors.

a 15th-order decomposition in each of the two measure-
ment planes [31, Eq. (4.26)]. The approach for covering
solid angle ranges at which no data are available that was
presented in [22] is not able to mitigate this. Spatial up-
sampling [32, 33] may be able to do so, whereby the user
has to guess a parametric model that approximates the ob-
served directivity. This is feasible for a singing voice but
more challenging for other types of sound sources and has
not been tested for such low orders of the initial data.

Based on our approach from Sec. 3, we applied the fol-
lowing procedure to obtain a high-order SH directivity rep-
resentation based on the available data:

e The measured transfer functions are very noisy. We
therefore applied third-octave-band smoothing to the
measured transfer functions (cf. Fig. 7).

e We manually set the magnitude directivity to a con-
stant value at very low and very high frequencies
where no reliable measurement data are available.

e We applied rotation about the z-axis to spatially
linearly interpolate the magnitude on a logarithmic
scale between the horizontal and vertical measure-
ment locations for each frequency bin as illustrated
in Fig. 8. The positions of the interpolated measure-
ment points are obtained via the standard rotation
matrix in Cartesian coordinates. The interpolation
of the magnitude is performed as

0 w/2—0

D(w) = —Dh(w) + 71_/2

whereby 6 is the angle in radians by which the hor-
izontal points are rotated towards the vertical ones,
and Dj,(r;,w) and D, (r;,w) are the magnitudes of
the horizontal and vertical measured data points be-
tween which the interpolation is performed. This
procedure is performed for all octants separately.

o We fitted a minimum phase to all magnitude data.

e We added a delay corresponding to the travel time
from the coordinate origin to the measurement sur-
face to maintain causality.
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Figure 7. Transfer functions of the singing voice (gray) as
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Figure 8. Balloon-plot-like snapshot of the interpolation
procedure from three different angles. The black dots mark
the data points obtained through interpolation.

e We performed an unregularized least-squares fit of
SH coefficients on the complex spectra. We arbitrar-
ily chose order 9 for this.

e We finally reference the directivity to the direction
straight ahead as any voice signal that we might want
to feed the directivity with needs to be recorded from
a given direction so that the recorded signal has the
source directivity for that direction embedded. It is
unclear at this state if such detailed referencing is
ideal given the noisiness of the measurement data.
A more gentle referencing is conceivable.

Fig. 9(a) depicts the resulting directivity for one se-
lected frequency. Fig. 10 depicts the corresponding trans-
fer functions for different directions inside the horizontal
plane. It is evident from Fig. 10 that the resulting mag-
nitude transfer functions are more erratic than one would
intuitively expect. The most plausible reason is the cir-
cumstance that the measurement data are very noisy (re-
call Fig. 7). The wigglyness apparent in Fig. 10 can either
be reduced by applying more aggressive smoothing of the
original data before the SH decomposition. Alternatively,
the SH fit can be modified according to [34, Eq. (9)], where
a Tikhonov regularization is proposed that penalizes higher
SH orders more than lower ones. The energy in the higher

(b)

Figure 9. Balloon plot of the resulting 9th-order proposed
SH representation of the singing voice at at f = 2.0 kHz.
The original measured data points are also indicated. Un-
regularized SH coefficient fit (a) and regularized coeffi-
cient fit (b).
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Figure 10. Transfer functions of the singing voice’s di-
rectivity in the horizontal plane in steps of 24° computed
directly from the SH representation. Black color repre-
sents the direction straight ahead; brighter color represents
directions further towards the rear; the brightest curve rep-
resents the azimuth 168°. (a): unregularized SH coefficient
fit. (b): regularized coefficient fit.

orders is thereby reduced. This produces smoother results
than without regularization as evident from Fig. 10(b). A
consequence is, of course, that also the angular depen-
dency of the directivity changes, cf. Fig. 9(b). It is unclear
at this stage in what situations what amount of regulariza-
tion is favorable. Comparing Fig. 9(a) and (b) with polar
diagrams created based on other voice directivity data such
as [3,33] suggests that Fig. 9(b) coincides better with pre-
viously published results.

6. CONCLUSIONS

We presented application examples for a previously pub-
lished approach for creating spherical harmonic (SH) rep-
resentations of sound source directivities. The approach
imposes an angular-dependent directivity onto a spheri-
cal wave and thereby mimicks the far-field approximation
of the original directivity. The examples we presented
demonstrate that the approach allows for creating com-



plete SH representations even from very sparsely available
data. Note that even one single data point is enough. This
allows for incorporating any available directivity data set
into even advanced applications. Our results based on a
loudspeaker directivity show that the proposed directivity
representation deviates only marginally from the conven-
tional representation if the sound source is compact.

The presented directivity representations are publicly
available [35].

APPENDIX: OUTLINE OF THE FDTD
SIMULATION FRAMEWORK

Volumetric time-domain acoustic simulation methods
(such as the finite difference time domain method, or
FDTD) have seen increasing use since their first appear-
ance in the early 1990s [36, 37]. Source directivity in
FDTD has been approached by various authors [2,38-40],
and most recently in [1], which describes a procedure
for inserting spherical harmonic encoded source directiv-
ity into an FDTD simulation.

As an example, we showed in [1] that a directivity that
is available as a set of SH coefficients Wlﬁm(R, w) (cf. (2))
over a sphere of finite radius R centered around the source
can be directly substituted into an FDTD simulation, with
appropriately defined SH driving terms. The input signals
d1,m (w) to the FDTD simulation can be computed via

4re (-1t it

W Wl,m(RaW) . 6)

dl}m(w) =

Note that the time-domain representation of the signals
a1.m (w) in (6) is injected into the FDTD simulation, which
requires the directivity to be available at any possible fre-
quency bin in the frequency range of interest or as impulse
responses.

Eq. (6) may be used with both conventional and pro-
posed directivity representations as we demonstrate in
Fig. 4 and 5. All simulations are run at 44.1 kHz, using a
basic 7-pt scheme, and using second order Engquist-Majda
absorbing boundary conditions [41] over a cubic domain of
side length 2 m.
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